organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(Benzo­thia­zol-2-yl)butyramide

aDepartment of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany
*Correspondence e-mail: sohail262001@yahoo.com

(Received 21 June 2008; accepted 4 July 2008; online 12 July 2008)

The title compound, C11H12N2OS, was synthesized from 2-amino­benzothia­zole and butanoyl chloride in anhydrous acetone. In the crystal structure, mol­ecules are linked by N—H⋯N and C—H⋯O hydrogen bonds and by C—H⋯π inter­actions.

Related literature

For related literature, see: Butt et al. (2005[Butt, M.-S., Akhter, Z., Zafer-uz-Zaman, M. & Munir, A. (2005). Eur. Polym. J. 41, 1638-1646.]); Im & Jung (2000[Im, J.-K. & Jung, J.-C. (2000). Polymer, 41, 8709-8716.]); Yang et al. (2002[Yang, C.-P., Chen, R.-S. & Hsu, M.-F. (2002). J. Polym. Res. 9, 245-250.]); Ataei et al. (2005[Ataei, S. M., Sarrafi, Y., Hatami, M. & Faizi, L. A. (2005). Eur. Polym. J. 41, 491-499.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12N2OS

  • Mr = 220.29

  • Triclinic, [P \overline 1]

  • a = 5.2916 (4) Å

  • b = 7.4462 (8) Å

  • c = 13.565 (1) Å

  • α = 92.618 (7)°

  • β = 90.607 (6)°

  • γ = 107.185 (8)°

  • V = 509.92 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 100 (2) K

  • 0.35 × 0.20 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur S diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.977, Tmax = 1.000 (expected range = 0.963–0.986)

  • 8577 measured reflections

  • 2728 independent reflections

  • 2172 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.090

  • S = 0.99

  • 2728 reflections

  • 141 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.84 (2) 2.40 (2) 3.232 (2) 172 (1)
C10—H10⋯Oii 0.95 2.46 3.277 (2) 144
C2—H2BCg1iii 0.99 2.66 3.56 152
C3—H3BCg1iv 0.99 2.64 3.47 142
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y, -z+1. Cg1 is the centroid of the C6–C11 ring.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

High temperature polymers have received much attention due to the increasing demands for the replacement of ceramics and metals (Ataei et al., 2005). However, in many cases, they are insoluble and do not melt below their decomposition temperature,which restricts their applications (Im & Jung, 2000). Thus, many studies have focused on obtaining aromatic polymers that are processable by conventional techniques (Yang et al., 2002). The title compound, (I), is a precursor for an attempt to synthesize polyimides (Butt et al., 2005), imidazole derivatives and transition metal complexes. The entire molecule (except H atoms) is planar within a mean deviation of 0.03 Å. Molecules are connected in ribbons parallel to [210] by classical hydrogen bonds N1—H1···N2 and additional weak hydrogen bonds C10—H10···O. S atoms of neighbouring molecules approach each other to 3.5267 (7) Å. Perpendicular to the ribbons are two C—H···π interactions (Table 1, Fig.2). The molecular structure of the title compound is depicted in Figure 1.

Related literature top

For related literature, see: Butt et al. (2005); Im & Jung (2000); Yang et al. (2002; Ataei et al., 2005).

Experimental top

A mixture of butanoyl chloride (0.1 mol) and 2-aminobenzothiazole (0.1 mol) in anhydrous acetone (75 ml) was refluxed for 20 h. After cooling, the reaction mixture was poured in acidified cold water. The resulting dark brown solid was filtered and washed with cold acetone. Crystals of the title compound (I) suitable for X-Ray analysis were obtained after re-crystallization of the solid from ethanol (2.36 g, 79%). m.p.447 K.

Refinement top

The NH hydrogen was refined freely. Methyl H atoms were included on the basis of an idealized rigid group (C—H 0.98 Å, H—C—H 109.5°) allowed to rotate but not tip. Other hydrogen atoms were included using a riding model with C—H 0.95 (aromatic) or 0.99 (methylene) Å. U(H) values were fixed at 1.5Uiso(C) of the parent C atom for methyl H, 1.2Uiso(C) for other H.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Ellipsoids represent 50% probability levels.
[Figure 2] Fig. 2. Packing diagram of I showing classical and "weak" H bonds and S···S contacts as thin dashed bonds. View direction is perpendicular to [102].
N-(Benzothiazol-2-yl)butyramide top
Crystal data top
C11H12N2OSZ = 2
Mr = 220.29F(000) = 232
Triclinic, P1Dx = 1.435 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.2916 (4) ÅCell parameters from 4460 reflections
b = 7.4462 (8) Åθ = 2.9–30.7°
c = 13.565 (1) ŵ = 0.29 mm1
α = 92.618 (7)°T = 100 K
β = 90.607 (6)°Plate, yellow
γ = 107.185 (8)°0.35 × 0.20 × 0.05 mm
V = 509.92 (8) Å3
Data collection top
Oxford Diffraction Xcalibur S
diffractometer
2728 independent reflections
Radiation source: Enhance (Mo) X-ray Source2172 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 16.1057 pixels mm-1θmax = 30.0°, θmin = 2.9°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 910
Tmin = 0.977, Tmax = 1.000l = 1918
8577 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0544P)2]
2728 reflections(Δ/σ)max = 0.001
141 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C11H12N2OSγ = 107.185 (8)°
Mr = 220.29V = 509.92 (8) Å3
Triclinic, P1Z = 2
a = 5.2916 (4) ÅMo Kα radiation
b = 7.4462 (8) ŵ = 0.29 mm1
c = 13.565 (1) ÅT = 100 K
α = 92.618 (7)°0.35 × 0.20 × 0.05 mm
β = 90.607 (6)°
Data collection top
Oxford Diffraction Xcalibur S
diffractometer
2728 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
2172 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 1.000Rint = 0.035
8577 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.41 e Å3
2728 reflectionsΔρmin = 0.26 e Å3
141 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Non-bonded distance

3.5267 (0.0007) S - S_$2 $2 - x + 2, -y + 1, -z + 1

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 2.9402 (0.0016) x + 6.9014 (0.0013) y + 2.6739 (0.0017) z = 1.5591 (0.0012)

* -0.0482 (0.0011) N1 * -0.0353 (0.0010) N2 * 0.0176 (0.0010) O * -0.0420 (0.0006) S * 0.0121 (0.0012) C1 * 0.0438 (0.0012) C2 * 0.0205 (0.0013) C3 * 0.0008 (0.0013) C4 * -0.0386 (0.0013) C5 * -0.0125 (0.0012) C6 * 0.0334 (0.0011) C7 * 0.0608 (0.0012) C8 * 0.0306 (0.0012) C9 * -0.0160 (0.0011) C10 * -0.0269 (0.0012) C11

Rms deviation of fitted atoms = 0.0332

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3005 (2)0.17657 (16)0.43971 (8)0.0115 (2)
H10.142 (3)0.110 (2)0.4321 (11)0.019 (4)*
N20.2856 (2)0.10743 (16)0.60669 (8)0.0110 (2)
O0.65683 (18)0.36649 (14)0.36601 (7)0.0168 (2)
S0.74719 (6)0.32370 (5)0.55350 (2)0.01216 (11)
C10.2219 (3)0.2887 (2)0.08646 (10)0.0186 (3)
H1A0.16690.15260.07100.028*
H1B0.31860.35400.03090.028*
H1C0.06530.33060.09810.028*
C20.4007 (3)0.3337 (2)0.17869 (9)0.0141 (3)
H2A0.56020.29310.16650.017*
H2B0.45890.47150.19340.017*
C30.2581 (2)0.2353 (2)0.26720 (9)0.0120 (3)
H3A0.10170.27940.27990.014*
H3B0.19350.09830.25060.014*
C40.4267 (2)0.26838 (19)0.35982 (9)0.0118 (3)
C50.4162 (2)0.19131 (19)0.53257 (9)0.0102 (3)
C60.4520 (2)0.14896 (19)0.69100 (9)0.0109 (3)
C70.3830 (3)0.0893 (2)0.78621 (9)0.0130 (3)
H70.20930.01230.79860.016*
C80.5711 (3)0.1442 (2)0.86165 (9)0.0142 (3)
H80.52440.10510.92640.017*
C90.8288 (3)0.2560 (2)0.84506 (10)0.0145 (3)
H90.95470.29070.89830.017*
C100.9017 (3)0.3166 (2)0.75156 (10)0.0133 (3)
H101.07640.39220.73950.016*
C110.7103 (3)0.26286 (19)0.67562 (9)0.0110 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0082 (5)0.0137 (6)0.0107 (5)0.0002 (5)0.0016 (4)0.0019 (4)
N20.0099 (5)0.0118 (6)0.0109 (5)0.0026 (4)0.0002 (4)0.0006 (4)
O0.0122 (4)0.0210 (6)0.0135 (5)0.0013 (4)0.0001 (4)0.0041 (4)
S0.00957 (16)0.0143 (2)0.01083 (16)0.00062 (12)0.00010 (11)0.00174 (12)
C10.0215 (7)0.0210 (8)0.0123 (6)0.0046 (6)0.0013 (5)0.0027 (6)
C20.0137 (6)0.0167 (8)0.0120 (6)0.0043 (6)0.0009 (5)0.0029 (5)
C30.0106 (6)0.0132 (7)0.0118 (6)0.0030 (5)0.0010 (5)0.0010 (5)
C40.0130 (6)0.0107 (7)0.0122 (6)0.0041 (5)0.0009 (5)0.0006 (5)
C50.0104 (6)0.0090 (7)0.0116 (6)0.0034 (5)0.0000 (4)0.0006 (5)
C60.0115 (6)0.0102 (7)0.0120 (6)0.0048 (5)0.0003 (5)0.0007 (5)
C70.0116 (6)0.0137 (7)0.0139 (6)0.0036 (5)0.0018 (5)0.0025 (5)
C80.0164 (6)0.0166 (8)0.0110 (6)0.0067 (6)0.0008 (5)0.0024 (5)
C90.0142 (6)0.0155 (8)0.0142 (6)0.0055 (5)0.0040 (5)0.0007 (5)
C100.0123 (6)0.0125 (7)0.0148 (6)0.0036 (5)0.0012 (5)0.0004 (5)
C110.0120 (6)0.0111 (7)0.0108 (6)0.0048 (5)0.0009 (4)0.0013 (5)
Geometric parameters (Å, º) top
N1—C41.3788 (16)C9—C101.3858 (18)
N1—C51.3803 (16)C10—C111.3956 (18)
N2—C51.3022 (16)N1—H10.841 (17)
N2—C61.4015 (16)C1—H1A0.9800
O—C41.2209 (16)C1—H1B0.9800
S—C111.7351 (13)C1—H1C0.9800
S—C51.7501 (13)C2—H2A0.9900
C1—C21.5238 (18)C2—H2B0.9900
C2—C31.5236 (17)C3—H3A0.9900
C3—C41.5011 (17)C3—H3B0.9900
C6—C71.4019 (17)C7—H70.9500
C6—C111.4027 (18)C8—H80.9500
C7—C81.3802 (18)C9—H90.9500
C8—C91.3988 (19)C10—H100.9500
C4—N1—C5123.92 (11)C2—C1—H1B109.5
C5—N2—C6108.90 (10)H1A—C1—H1B109.5
C11—S—C587.62 (6)C2—C1—H1C109.5
C3—C2—C1111.29 (11)H1A—C1—H1C109.5
C4—C3—C2113.98 (11)H1B—C1—H1C109.5
O—C4—N1121.46 (12)C3—C2—H2A109.4
O—C4—C3124.23 (11)C1—C2—H2A109.4
N1—C4—C3114.30 (11)C3—C2—H2B109.4
N2—C5—N1121.66 (11)C1—C2—H2B109.4
N2—C5—S118.00 (9)H2A—C2—H2B108.0
N1—C5—S120.34 (9)C4—C3—H3A108.8
N2—C6—C7126.34 (12)C2—C3—H3A108.8
N2—C6—C11114.83 (11)C4—C3—H3B108.8
C7—C6—C11118.83 (12)C2—C3—H3B108.8
C8—C7—C6119.00 (12)H3A—C3—H3B107.7
C7—C8—C9121.58 (12)C8—C7—H7120.5
C10—C9—C8120.45 (12)C6—C7—H7120.5
C9—C10—C11117.88 (12)C7—C8—H8119.2
C10—C11—C6122.25 (12)C9—C8—H8119.2
C10—C11—S127.12 (10)C10—C9—H9119.8
C6—C11—S110.63 (9)C8—C9—H9119.8
C4—N1—H1118.4 (11)C9—C10—H10121.1
C5—N1—H1117.7 (11)C11—C10—H10121.1
C2—C1—H1A109.5
C1—C2—C3—C4177.95 (12)N2—C6—C7—C8179.52 (13)
C5—N1—C4—O2.2 (2)C11—C6—C7—C80.1 (2)
C5—N1—C4—C3178.25 (12)C6—C7—C8—C90.6 (2)
C2—C3—C4—O0.8 (2)C7—C8—C9—C100.6 (2)
C2—C3—C4—N1178.73 (11)C8—C9—C10—C110.2 (2)
C6—N2—C5—N1179.44 (12)C9—C10—C11—C61.0 (2)
C6—N2—C5—S0.99 (15)C9—C10—C11—S178.35 (10)
C4—N1—C5—N2177.35 (12)N2—C6—C11—C10179.60 (12)
C4—N1—C5—S3.09 (18)C7—C6—C11—C100.9 (2)
C11—S—C5—N20.39 (11)N2—C6—C11—S0.99 (15)
C11—S—C5—N1179.97 (12)C7—C6—C11—S178.49 (10)
C5—N2—C6—C7178.19 (13)C5—S—C11—C10179.73 (14)
C5—N2—C6—C111.25 (17)C5—S—C11—C60.35 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.84 (2)2.40 (2)3.232 (2)172 (1)
C10—H10···Oii0.952.463.277 (2)144
C2—H2B···Cent(C6–C11)iii0.992.663.56152
C3—H3B···Cent(C6–C11)iv0.992.643.47142
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC11H12N2OS
Mr220.29
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.2916 (4), 7.4462 (8), 13.565 (1)
α, β, γ (°)92.618 (7), 90.607 (6), 107.185 (8)
V3)509.92 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.35 × 0.20 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur S
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.977, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8577, 2728, 2172
Rint0.035
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.091, 0.99
No. of reflections2728
No. of parameters141
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.26

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.84 (2)2.40 (2)3.232 (2)172 (1)
C10—H10···Oii0.952.463.277 (2)144.1
C2—H2B···Cent(C6–C11)iii0.992.663.56152
C3—H3B···Cent(C6–C11)iv0.992.643.47142
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1.
 

Acknowledgements

The authors are grateful to Allama Iqbal Open University, Islamabad, Pakistan, for providing the research and analytical laboratory facilities.

References

First citationAtaei, S. M., Sarrafi, Y., Hatami, M. & Faizi, L. A. (2005). Eur. Polym. J. 41, 491–499.  Web of Science CrossRef Google Scholar
First citationButt, M.-S., Akhter, Z., Zafer-uz-Zaman, M. & Munir, A. (2005). Eur. Polym. J. 41, 1638–1646.  Web of Science CrossRef CAS Google Scholar
First citationIm, J.-K. & Jung, J.-C. (2000). Polymer, 41, 8709–8716.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYang, C.-P., Chen, R.-S. & Hsu, M.-F. (2002). J. Polym. Res. 9, 245–250.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds