organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro­phenyl 4-methyl­benzoate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 10 July 2008; accepted 12 July 2008; online 16 July 2008)

The crystal structure of the title compound (4CP4MBA), C14H11ClO2, resembles those of 3-chloro­phenyl 4-methyl­benzoate (3CP4MBA), 4-methyl­phenyl 4-methyl­benzoate (4MP4MBA), 4-methyl­phenyl 4-chloro­benzoate (4MP4CBA) and other aryl benzoates with similar bond parameters. The dihedral angle between the benzene rings in 4CP4MBA is 63.89 (8)°, compared with 71.75 (7)° in 3CP4MBA, 63.57 (5)° in 4MP4MBA and 51.86 (4)° in 4MP4CBA. In the crystal structure of the title compound, the mol­ecules are linked into an infinite chain along the a axis via C—H—O hydrogen bonds.

Related literature

For related literature, see: Gowda et al. (2007[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007). Acta Cryst. E63, o3867.]); Gowda, Foro, et al. (2008[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1390.]); Gowda, Svoboda et al. (2008[Gowda, B. T., Svoboda, I., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o88.]); Nayak & Gowda (2008[Nayak, R. & Gowda, B. T. (2008). Z. Naturforsch. Teil A, 63.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11ClO2

  • Mr = 246.68

  • Monoclinic, P 21 /n

  • a = 6.048 (2) Å

  • b = 7.559 (2) Å

  • c = 26.487 (5) Å

  • β = 95.68 (4)°

  • V = 1205.0 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.69 mm−1

  • T = 299 (2) K

  • 0.65 × 0.60 × 0.45 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.216, Tmax = 0.298

  • 2872 measured reflections

  • 2141 independent reflections

  • 1968 reflections with I > 2σ(I)

  • Rint = 0.053

  • 3 standard reflections frequency: 120 min intensity decay: 1.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.092

  • wR(F2) = 0.313

  • S = 1.51

  • 2141 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.94 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.93 2.51 3.212 (3) 132
Symmetry code: (i) x+1, y, z.

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, as part of a study of the substituent effects on the solid state structures of aryl benzoates (Gowda et al. 2007; Gowda, Foro, et al., 2008; Gowda, Svoboda et al., 2008), the structure of 4-chlorophenyl 4-methylbenzoate (4CP4MBA) has been determined. The structure of 4CP4MBA (Fig. 1) is similar to those of 3-chlorophenyl 4-methylbenzoate (3CP4MBA)(Gowda, Foro et al., 2008), 4-methylphenyl 4-methylbenzoate (4MP4MBA)(Gowda et al., 2007), 4-methylphenyl 4-chlorobenzoate (4MP4CBA) (Gowda, Svoboda et al., 2008) The bond parameters in 4CP4MBA are similar to those in 3CP4MBA, 4MP4MBA, 4MP4CBA and other aryl benzoates. The dihedral angle between the benzene and benzoyl rings in 4CP4MBA is 63.89 (8)°, compared to the values of 71.75 (7)° in 3CP4MeBA, 63.57 (5)° in 4MP4MBA and 51.86 (4)° in 4MP4CBA. The molecules in the crystal structure of 4CP4MBA are packed into chains via C—H—O hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For related literature, see: Gowda et al. (2007); Gowda, Foro, et al. (2008); Gowda, Svoboda et al. (2008); Nayak & Gowda (2008).

Experimental top

The title compound was prepared according to a literature method (Nayak & Gowda, 2008). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Nayak & Gowda, 2008). Single crystals of the title compound used in X-ray diffraction studies were obtained by slow evaporation of its ethanol solution.

Refinement top

All H atoms were included in the riding-model approximation, with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Molecular packing of the title compound, viewed along the b axis.
4-Chlorophenyl 4-methylbenzoate top
Crystal data top
C14H11ClO2F(000) = 512
Mr = 246.68Dx = 1.360 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 6.048 (2) Åθ = 3.4–16.9°
b = 7.559 (2) ŵ = 2.69 mm1
c = 26.487 (5) ÅT = 299 K
β = 95.68 (4)°Prism, colourless
V = 1205.0 (6) Å30.65 × 0.60 × 0.45 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1968 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
Graphite monochromatorθmax = 67.0°, θmin = 3.4°
ω/2θ scansh = 72
Absorption correction: ψ scan
(North et al., 1968)
k = 90
Tmin = 0.216, Tmax = 0.298l = 3131
2872 measured reflections3 standard reflections every 120 min
2141 independent reflections intensity decay: 1.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.092H-atom parameters constrained
wR(F2) = 0.313 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.51(Δ/σ)max = 0.001
2141 reflectionsΔρmax = 0.53 e Å3
156 parametersΔρmin = 0.94 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.048 (9)
Crystal data top
C14H11ClO2V = 1205.0 (6) Å3
Mr = 246.68Z = 4
Monoclinic, P21/nCu Kα radiation
a = 6.048 (2) ŵ = 2.69 mm1
b = 7.559 (2) ÅT = 299 K
c = 26.487 (5) Å0.65 × 0.60 × 0.45 mm
β = 95.68 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1968 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.053
Tmin = 0.216, Tmax = 0.2983 standard reflections every 120 min
2872 measured reflections intensity decay: 1.5%
2141 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0920 restraints
wR(F2) = 0.313H-atom parameters constrained
S = 1.51Δρmax = 0.53 e Å3
2141 reflectionsΔρmin = 0.94 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.75384 (13)0.28660 (13)0.53235 (3)0.0895 (6)
O10.2922 (3)0.3273 (3)0.32780 (7)0.0708 (7)
O20.0565 (3)0.5372 (3)0.34855 (6)0.0655 (7)
C10.3932 (4)0.3235 (3)0.37781 (9)0.0577 (7)
C20.5981 (4)0.4028 (4)0.38707 (10)0.0627 (8)
H20.66120.46290.36140.075*
C30.7081 (4)0.3910 (3)0.43527 (11)0.0643 (8)
H30.84670.44360.44250.077*
C40.6124 (5)0.3022 (3)0.47205 (10)0.0618 (8)
C50.4096 (5)0.2231 (4)0.46293 (11)0.0697 (8)
H50.34730.16270.48860.084*
C60.2981 (4)0.2344 (4)0.41478 (11)0.0693 (8)
H60.15960.18150.40780.083*
C70.1213 (3)0.4406 (3)0.31755 (8)0.0522 (7)
C80.0302 (3)0.4314 (3)0.26348 (8)0.0492 (7)
C90.1415 (4)0.3453 (3)0.22735 (9)0.0571 (7)
H90.27810.29190.23660.068*
C100.0495 (4)0.3389 (3)0.17768 (10)0.0591 (7)
H100.12660.28340.15350.071*
C110.1566 (4)0.4140 (3)0.16318 (9)0.0549 (7)
C120.2636 (4)0.5008 (3)0.19962 (10)0.0605 (7)
H120.40120.55270.19050.073*
C130.1715 (4)0.5122 (3)0.24905 (9)0.0579 (7)
H130.24460.57410.27280.069*
C140.2612 (5)0.4005 (4)0.10953 (11)0.0718 (8)
H14A0.17570.32140.09080.086*
H14B0.26510.51540.09400.086*
H14C0.40990.35590.10940.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0931 (9)0.1079 (9)0.0595 (8)0.0047 (4)0.0318 (5)0.0080 (3)
O10.0735 (12)0.0844 (13)0.0496 (12)0.0203 (9)0.0187 (8)0.0115 (9)
O20.0671 (12)0.0793 (12)0.0480 (11)0.0089 (8)0.0050 (7)0.0095 (8)
C10.0570 (13)0.0664 (13)0.0460 (14)0.0066 (9)0.0130 (9)0.0050 (10)
C20.0586 (14)0.0753 (15)0.0522 (15)0.0014 (10)0.0054 (10)0.0072 (12)
C30.0543 (13)0.0703 (15)0.0644 (16)0.0030 (10)0.0135 (10)0.0029 (12)
C40.0653 (15)0.0640 (14)0.0518 (15)0.0026 (9)0.0152 (10)0.0020 (10)
C50.0730 (16)0.0801 (17)0.0532 (16)0.0130 (12)0.0069 (12)0.0089 (12)
C60.0609 (15)0.0791 (16)0.0637 (17)0.0128 (11)0.0148 (11)0.0027 (13)
C70.0480 (12)0.0595 (13)0.0471 (13)0.0029 (8)0.0061 (9)0.0003 (9)
C80.0506 (11)0.0511 (11)0.0439 (13)0.0028 (7)0.0058 (8)0.0004 (8)
C90.0525 (13)0.0604 (12)0.0557 (14)0.0063 (9)0.0076 (9)0.0049 (10)
C100.0635 (15)0.0665 (14)0.0458 (13)0.0082 (10)0.0025 (10)0.0061 (10)
C110.0635 (13)0.0499 (11)0.0481 (14)0.0014 (8)0.0103 (10)0.0022 (9)
C120.0555 (13)0.0675 (14)0.0556 (14)0.0098 (9)0.0085 (10)0.0043 (11)
C130.0607 (14)0.0665 (14)0.0452 (13)0.0081 (9)0.0012 (9)0.0032 (10)
C140.0862 (19)0.0737 (16)0.0512 (16)0.0040 (12)0.0150 (12)0.0004 (12)
Geometric parameters (Å, º) top
Cl1—C41.740 (3)C8—C131.384 (3)
O1—C71.350 (3)C8—C91.386 (3)
O1—C11.403 (3)C9—C101.378 (3)
O2—C71.193 (3)C9—H90.9300
C1—C61.362 (4)C10—C111.389 (3)
C1—C21.376 (4)C10—H100.9300
C2—C31.383 (4)C11—C121.380 (4)
C2—H20.9300C11—C141.501 (3)
C3—C41.359 (4)C12—C131.374 (4)
C3—H30.9300C12—H120.9300
C4—C51.364 (4)C13—H130.9300
C5—C61.385 (4)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—H60.9300C14—H14C0.9600
C7—C81.484 (3)
C7—O1—C1117.12 (18)C13—C8—C7118.57 (19)
C6—C1—C2121.6 (3)C9—C8—C7122.0 (2)
C6—C1—O1120.9 (2)C10—C9—C8119.8 (2)
C2—C1—O1117.4 (2)C10—C9—H9120.1
C1—C2—C3118.6 (2)C8—C9—H9120.1
C1—C2—H2120.7C9—C10—C11121.1 (2)
C3—C2—H2120.7C9—C10—H10119.4
C4—C3—C2119.6 (2)C11—C10—H10119.4
C4—C3—H3120.2C12—C11—C10118.1 (2)
C2—C3—H3120.2C12—C11—C14120.8 (2)
C3—C4—C5121.9 (3)C10—C11—C14121.1 (2)
C3—C4—Cl1119.1 (2)C13—C12—C11121.5 (2)
C5—C4—Cl1119.0 (2)C13—C12—H12119.2
C4—C5—C6118.9 (3)C11—C12—H12119.2
C4—C5—H5120.5C12—C13—C8119.9 (2)
C6—C5—H5120.5C12—C13—H13120.0
C1—C6—C5119.4 (2)C8—C13—H13120.0
C1—C6—H6120.3C11—C14—H14A109.5
C5—C6—H6120.3C11—C14—H14B109.5
O2—C7—O1123.2 (2)H14A—C14—H14B109.5
O2—C7—C8125.2 (2)C11—C14—H14C109.5
O1—C7—C8111.57 (19)H14A—C14—H14C109.5
C13—C8—C9119.5 (2)H14B—C14—H14C109.5
C7—O1—C1—C679.0 (3)O2—C7—C8—C1313.8 (3)
C7—O1—C1—C2105.3 (3)O1—C7—C8—C13167.3 (2)
C6—C1—C2—C30.2 (4)O2—C7—C8—C9165.9 (2)
O1—C1—C2—C3175.8 (2)O1—C7—C8—C912.9 (3)
C1—C2—C3—C40.1 (4)C13—C8—C9—C100.8 (3)
C2—C3—C4—C50.1 (4)C7—C8—C9—C10179.5 (2)
C2—C3—C4—Cl1179.36 (19)C8—C9—C10—C111.5 (4)
C3—C4—C5—C60.2 (5)C9—C10—C11—C122.2 (4)
Cl1—C4—C5—C6179.4 (2)C9—C10—C11—C14177.4 (2)
C2—C1—C6—C50.1 (4)C10—C11—C12—C130.5 (4)
O1—C1—C6—C5175.6 (2)C14—C11—C12—C13179.1 (2)
C4—C5—C6—C10.1 (5)C11—C12—C13—C81.8 (4)
C1—O1—C7—O21.1 (3)C9—C8—C13—C122.5 (4)
C1—O1—C7—C8179.94 (19)C7—C8—C13—C12177.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.932.513.212 (3)132
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H11ClO2
Mr246.68
Crystal system, space groupMonoclinic, P21/n
Temperature (K)299
a, b, c (Å)6.048 (2), 7.559 (2), 26.487 (5)
β (°) 95.68 (4)
V3)1205.0 (6)
Z4
Radiation typeCu Kα
µ (mm1)2.69
Crystal size (mm)0.65 × 0.60 × 0.45
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.216, 0.298
No. of measured, independent and
observed [I > 2σ(I)] reflections
2872, 2141, 1968
Rint0.053
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.092, 0.313, 1.51
No. of reflections2141
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.94

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.932.513.212 (3)132.4
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007). Acta Cryst. E63, o3867.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1390.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Svoboda, I., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o88.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNayak, R. & Gowda, B. T. (2008). Z. Naturforsch. Teil A, 63Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds