metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1044-m1045

catena-Poly[[bis­­[1-(2-hy­droxy­ethyl)-1H-tetra­zole-κN4]copper(II)]-di-μ-chlorido]: a powder study

aResearch Institute for Physico-Chemical Problems, Belarusian State University, Leningradskaya Str. 14, Minsk 220030, Belarus
*Correspondence e-mail: iva@bsu.by

(Received 20 June 2008; accepted 15 July 2008; online 19 July 2008)

The crystal structure of the title polymeric complex, [CuCl2(C3H6N4O)2]n, was obtained by the Rietveld refinement from laboratory X-ray powder diffraction data collected at room temperature. The unique CuII ion lies on an inversion center and is in a slightly distorted octa­hedral coordination environment. In the hydroxy­ethyl group, all H atoms, the O atom and its attached C atom are disordered over two positions; the site occupancy factors are ca 0.6 and 0.4. The OH group is involved in an intra­molecular O—H⋯N hydrogen bond.

Related literature

For related literature, see: Ivashkevich et al. (2001[Ivashkevich, D. O., Lyakhov, A. S., Gaponik, P. N., Bogatikov, A. N. & Govorova, A. A. (2001). Acta Cryst. E57, m335-m337.]); Ivashkevich, Lyakhov et al. (2005[Ivashkevich, L. S., Lyakhov, A. S., Ivashkevich, D. O., Degtyarik, M. M. & Gaponik, P. N. (2005). Russ. J. Inorg. Chem. 50, 78-82.]); Ivashkevich, Voitekhovich & Lyakhov (2005[Ivashkevich, D. O., Voitekhovich, S. V. & Lyakhov, A. S. (2005). XXII International Chugaev Conference on Coordination Chemistry, Kishinev, 2005. Book of Abstracts, p. 371.]); Stassen et al. (2002[Stassen, A. F., Kooijman, H., Spek, A. L., Jos de Jongh, L., Haasnoot, J. G. & Reedijk, J. (2002). Inorg. Chem. 41, 6468-6473.]); Werner et al. (1985[Werner, P.-E., Eriksson, L. & Westdahl, M. (1985). J. Appl. Cryst. 18, 367-370.]); Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Virovets et al. (1995[Virovets, A. V., Podberezskaya, N. V., Lavrenova, L. G. & Bikzhanova, G. A. (1995). Acta Cryst. C51, 1084-1087.], 1996[Virovets, A. V., Baidina, I. A., Alekseev, V. I., Podberezskaya, N. V. & Lavrenova, L. G. (1996). Zh. Strukt. Khim. 37, 330-336.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl2(C3H6N4O)2]

  • Mr = 362.69

  • Monoclinic, P 21 /c

  • a = 13.3349 (11) Å

  • b = 6.7406 (6) Å

  • c = 7.3419 (5) Å

  • β = 105.450 (8)°

  • V = 636.08 (9) Å3

  • Z = 2

  • Cu Kα radiation

  • T = 295 (2) K

  • Specimen shape: flat sheet

  • 30 × 30 × 1 mm

  • Specimen prepared at 100 kPa

  • Specimen prepared at 295(2) K

  • Particle morphology: plate, green

Data collection
  • HZG-4A (Carl Zeiss, Jena) diffractometer

  • Specimen mounting: packed powder pellet

  • Specimen mounted in reflection mode

  • Scan method: step

  • 2θmin = 5.0, 2θmax = 100.0°

  • Increment in 2θ = 0.02°

Refinement
  • Rp = 0.042

  • Rwp = 0.067

  • Rexp = 0.086

  • RB = 0.029

  • S = 0.78

  • Wavelength of incident radiation: 1.5418 Å

  • Excluded region(s): none

  • Profile function: pseudo-Voigt

  • 785 reflections

  • 48 parameters

  • 21 restraints

  • H-atom parameters constrained

  • Preferred orientation correction: Marsh–Dollase function (Marsh, 1932[Marsh, A. (1932). Z. Kristallogr. 81, 285-297.]; Dollase, 1986[Dollase, W. A. (1986). J. Appl. Cryst. 19, 267-272.])

Table 1
Selected geometric parameters (Å, °)

Cu—Cl 2.234 (7)
Cu—N4 1.979 (10)
Cu—Cli 3.008 (7)
Cu—Cuii 4.9835 (4)
Cl—Cu—N4 89.8 (7)
Cl—Cu—Cli 90.8 (2)
Cl—Cu—Cliii 180
Cl—Cu—N4iii 90.2 (7)
Cl—Cu—Cliv 89.2 (2)
Cli—Cu—N4 92.6 (5)
N4—Cu—N4iii 180
Cliv—Cu—N4 87.4 (5)
Cu—Cl—Cuii 143.5 (2)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y, -z+1; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.82 2.35 3.08 (3) 149
O2—H2⋯N2 0.82 2.46 3.02 (3) 126
C5—H5⋯Clii 0.93 2.72 3.34 (2) 126
Symmetry code: (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: local program; cell refinement: FULLPROF (Rodríguez-Carvajal, 2001[Rodríguez-Carvajal, J. (2001). FULLPROF. CEA/Saclay, France.]); data reduction: local program; program(s) used to refine structure: FULLPROF and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: FULLPROF and PLATON.

Supporting information


Comment top

Complexes of copper(II) chloride with substituted tetrazoles attract attention because of their magnetic bahaviour at low temperatures. Among them, there are layered coordination polymers with square grids of only Cu and Cl atoms, of the composition CuCl2L2, where L = 1-ethyltetrazole (Virovets et al., 1995), 1-allyltetrazole (Virovets et al., 1996), 1-(2-azidoethyl)terazole (Ivashkevich et al., 2001), 1-(2-chloroethyl)tetrazole (Stassen et al., 2002), 1-benzyltetrazole (Ivashkevich, Voitekhovich & Lyakhov, 2005), and 1-methyltetrazole (Ivashkevich, Lyakhov, Ivashkevich, Degtyarik & Gaponik, 2005). These compounds crystallize in the space group P21/c and are isotypic. Here, we present another example, poly[[bis(1-(2-hydroxyethyl)tetrazole-N4)copper(II)]-di-µ-chloro], (I), (Fig. 1). As it is difficult to obtain single crystals for structural analysis, the compound (I) was investigated by X-ray powder diffraction.

The Cu atom lies on inversion center and shows a slightly distorted octahedral coordination environment. Equatorial sites are occupied by two trans positioned N atoms and two Cl atoms; Cl atoms lying in axial positions are essentially more distant from the Cu atom (Table 1). Each Cl atom is a bridge between the neighbouring Cu atoms, forming two different in length Cu—Cl bonds, with Cu—Cl—Cu angle of 143.4 (2)°. These bonds are responsible for the formation of polymeric layers parallel to the yz plane (Fig. 2). Within a layer, the shortest Cu···Cu distance is 4.9835 (4) Å, whereas between two neighbouring layers, the closest Cu centers are separated by cell dimension a. Only van der Waals interactions are between the layers.

The 2-hydroxyethyl substituent at the tetrazole ring atom N1 was found to be disordered over two positions, with almost equal occupancies of 0.562 (12) for C71—O1 and 0.438 (12) for C72—O2 (Fig. 1). For both positions, OH groups are involved in intramolecular hydrogen bonds O—H···N. There are also hydrogen bonds C—H···Cl (Table 2).

Related literature top

For related literature, see: Ivashkevich et al. (2001); Ivashkevich, Lyakhov, et al. (2005); Ivashkevich, Voitekhovich & Lyakhov (2005); Stassen et al. (2002); Werner et al. (1985).

For related literature, see: Allen (2002); Virovets et al. (1995, 1996).

Experimental top

A solution, containing 2.13 g (0.0125 mol) of CuCl2.2H2O in 75 ml of ethanol, was added to a slightly heated solution of 1-(2-hydroxyethyl)tetrazole (2.85 g, 0.025 mol) in a solvent mixture (45 ml of ethanol and 30 ml of n-buthanol), with stirring at room temperature. After stirring the reaction mixture for 10 min, the obtained green crystals of (I) were filtered off, air dried and recrystallized from (ethanol—n-buthanol) mixture (v/v = 4:1) [3.55 g, yield 78.3%]. Calc.(%): Cu 17.52, Cl 19.59. Found (%): Cu 18.2, Cl 20.1.

Refinement top

The monoclinic unit-cell dimensions of (I) were determined with the indexing program TREOR90 (Werner et al., 1985). The obtained values indicated isotypism of (I) with layered coordination polymers CuCl2L2 (L = 1-alkyltetrazole) that crystallize in the monoclinic space group P21/c. This space group and the atomic coordinates of CuCl2L2 with L = 1-ethyltetrazole (Virovets et al., 1995) were used as starting parameters for the Rietveld refinement with the FULLPROF program (Rodríguez-Carvajal, 2001). Background intensity was found by Fourier filtering technique as implemented in the FULLPROF program, under visual inspection of the resulting background curve. Correction for profile asymmetry was made for reflections up to 2θ=30°. A Marsh-Dollase correction of intensities for [100] preferred orientation of plate-like grains in the sample (Marsh, 1932; Dollase, 1986) was applied.

The Rietveld refinement, performed primarily by using individual isotropic displacement parameters for non-H atoms, revealed rather high values of Biso for atoms of C—O fragment. From this fact an assumption was made that C—O fragment was disordered over two positions. It was confirmed in subsequent refinement by introducing disorder positions for the above C and O atoms. In final refinement, all non-H atoms were refined with overall Biso parameter.

All H atoms were placed in geometrically calculated positions, using the program SHELXL97 (Sheldrick, 2008), with displacement parameter Biso(H)=1.2Biso(C) for H atom at C5 tetrazole ring atom and Biso(H)=1.5Biso(C,O) for the methylene and hydroxyl groups.

Soft restraints on some interatomic distances and bond angles of ligand molecule, based on a geometric analysis of a large number of 1-substituted tetrazoles (Cambridge Structural Database, version 5.29 of November 2007; Allen, 2002), were used in the Rietved refinement. Observed, calculated and difference difraction patterns are shown in Fig. 3.

Computing details top

Data collection: local program; cell refinement: FULLPROF (Rodríguez-Carvajal, 2001); data reduction: local program; program(s) used to refine structure: FULLPROF (Rodríguez-Carvajal, 2001) and SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: FULLPROF (Rodríguez-Carvajal, 2001) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with the atomic numbering scheme. 2-hydroxyethyl substituent is shown as disordered over two positions.
[Figure 2] Fig. 2. Layered structure of (I), viewed along the b axis. Disordered 2-hydroxyethyl substituent is shown only in position with occupancy factor of 0.562 (12).
[Figure 3] Fig. 3. The Rietveld plot, showing the observed (circles), calculated (line) and difference patterns for (I). The reflection positions are shown above the difference pattern.
catena-Poly[[bis[1-(2-hydroxyethyl)-1H-tetrazole-κN4]copper(II)]- di-µ-chlorido] top
Crystal data top
[CuCl2(C3H6N4O)2]Z = 2
Mr = 362.69F(000) = 366.0
Monoclinic, P21/cDx = 1.894 Mg m3
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.5418 Å
a = 13.3349 (11) ÅT = 295 K
b = 6.7406 (6) ÅParticle morphology: plate
c = 7.3419 (5) Ågreen
β = 105.450 (8)°flat sheet, 30 × 30 mm
V = 636.08 (9) Å3Specimen preparation: Prepared at 295 K and 100 kPa
Data collection top
HZG-4A (Carl Zeiss, Jena)
diffractometer
Data collection mode: reflection
Radiation source: fine-focus sealed X-ray tube, BSV-29Scan method: step
Ni filtered monochromator2θmin = 5.000°, 2θmax = 100.000°, 2θstep = 0.020°
Specimen mounting: packed powder pellet
Refinement top
Refinement on InetProfile function: psevdo-Voigt
Least-squares matrix: full with fixed elements per cycle48 parameters
Rp = 0.04221 restraints
Rwp = 0.0670 constraints
Rexp = 0.086H-atom parameters constrained
RBragg = 0.029Weighting scheme based on measured s.u.'s
χ2 = 0.608(Δ/σ)max = 0.02
4751 data pointsBackground function: Fourier filtering
Excluded region(s): nonePreferred orientation correction: Marsh–Dollase function (Marsh, 1932; Dollase, 1986)
Crystal data top
[CuCl2(C3H6N4O)2]β = 105.450 (8)°
Mr = 362.69V = 636.08 (9) Å3
Monoclinic, P21/cZ = 2
a = 13.3349 (11) ÅCu Kα radiation, λ = 1.5418 Å
b = 6.7406 (6) ÅT = 295 K
c = 7.3419 (5) Åflat sheet, 30 × 30 mm
Data collection top
HZG-4A (Carl Zeiss, Jena)
diffractometer
Scan method: step
Specimen mounting: packed powder pellet2θmin = 5.000°, 2θmax = 100.000°, 2θstep = 0.020°
Data collection mode: reflection
Refinement top
Rp = 0.0424751 data points
Rwp = 0.06748 parameters
Rexp = 0.08621 restraints
RBragg = 0.029H-atom parameters constrained
χ2 = 0.608
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu0.000000.000000.500000.0309 (10)*
Cl0.0624 (4)0.2048 (11)0.2569 (10)0.0309 (10)*
N10.24708 (16)0.3706 (2)0.583 (4)0.0309 (10)*
N20.2982 (2)0.19676 (13)0.595 (3)0.0309 (10)*
N30.2308 (2)0.05581 (18)0.577 (3)0.0309 (10)*
N40.1358 (4)0.1377 (3)0.553 (4)0.0309 (10)*
C50.14654 (16)0.3314 (4)0.545 (5)0.0309 (10)*
H50.092920.424030.516210.0309 (10)*
C60.3006 (6)0.5643 (10)0.5973 (16)0.0309 (10)*
H61A0.246020.663460.564340.0309 (10)*0.562 (12)
H61B0.335510.566180.497310.0309 (10)*0.562 (12)
C710.3778 (18)0.641 (2)0.768 (3)0.0309 (10)*0.562 (12)
H71A0.417910.745860.732830.0309 (10)*0.562 (12)
H71B0.340710.696330.854670.0309 (10)*0.562 (12)
O10.4451 (15)0.489 (3)0.862 (5)0.0309 (10)*0.562 (12)
H10.426270.382070.811680.0309 (10)*0.562 (12)
H62A0.315640.609020.727560.0309 (10)*0.438 (12)
H62B0.253310.659670.520390.0309 (10)*0.438 (12)
C720.3987 (12)0.565 (7)0.539 (4)0.0309 (10)*0.438 (12)
H72A0.389570.489600.423210.0309 (10)*0.438 (12)
H72B0.417270.699670.515990.0309 (10)*0.438 (12)
O20.479 (2)0.480 (6)0.684 (5)0.0309 (10)*0.438 (12)
H20.468540.359070.689290.0309 (10)*0.438 (12)
Geometric parameters (Å, º) top
Cu—Cl2.234 (7)N3—N41.350 (11)
Cu—N41.979 (10)N4—C51.316 (4)
Cu—Cli3.008 (7)C6—C711.49 (2)
Cu—Clii2.234 (7)C6—C721.48 (2)
Cu—N4ii1.979 (10)C5—H50.9300
Cu—Cliii3.008 (7)C6—H61B0.9700
O1—C711.41 (3)C6—H62A0.9700
O2—C721.42 (5)C6—H61A0.9700
O1—H10.8200C6—H62B0.9700
O2—H20.8200C71—H71A0.9700
N1—N21.346 (6)C71—H71B0.9700
N1—C51.321 (15)C72—H72A0.9700
N1—C61.478 (8)C72—H72B0.9700
N2—N31.291 (7)Cu—Cuiv4.9835 (4)
Cl—Cu—N489.8 (7)N1—C6—C72115 (2)
Cl—Cu—Cli90.8 (2)N1—C6—C71125.5 (14)
Cl—Cu—Clii180O1—C71—C6111.5 (15)
Cl—Cu—N4ii90.2 (7)O2—C72—C6110 (2)
Cl—Cu—Cliii89.2 (2)N1—C5—H5126.00
Cli—Cu—N492.6 (5)N4—C5—H5126.00
Clii—Cu—N490.2 (7)N1—C6—H61B106.00
N4—Cu—N4ii180N1—C6—H62A108.00
Cliii—Cu—N487.4 (5)N1—C6—H62B108.00
Cli—Cu—Clii89.2 (2)C71—C6—H61A106.00
Cli—Cu—N4ii87.4 (5)C71—C6—H61B106.00
Cli—Cu—Cliii180.00H61A—C6—H61B106.00
Clii—Cu—N4ii89.8 (7)C72—C6—H62A109.00
Clii—Cu—Cliii90.8 (2)C72—C6—H62B109.00
Cliii—Cu—N4ii92.6 (5)H62A—C6—H62B107.00
Cu—Cl—Cuiv143.5 (2)N1—C6—H61A106.00
C71—O1—H1109.00O1—C71—H71A109.00
C72—O2—H2109.00O1—C71—H71B109.00
N2—N1—C6122.6 (7)C6—C71—H71B109.00
C5—N1—C6129.4 (6)H71A—C71—H71B108.00
N2—N1—C5107.9 (5)C6—C71—H71A109.00
N1—N2—N3107.9 (6)C6—C72—H72A110.00
N2—N3—N4108.4 (3)C6—C72—H72B110.00
Cu—N4—N3127.6 (3)O2—C72—H72A110.00
N3—N4—C5107.5 (8)O2—C72—H72B109.00
Cu—N4—C5124.1 (9)H72A—C72—H72B108.00
N1—C5—N4107.8 (9)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.82002.35003.08 (3)149.00
O2—H2···N20.82002.46003.02 (3)126.00
C5—H5···Cliv0.93002.72003.34 (2)126.00
Symmetry code: (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[CuCl2(C3H6N4O)2]
Mr362.69
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)13.3349 (11), 6.7406 (6), 7.3419 (5)
β (°) 105.450 (8)
V3)636.08 (9)
Z2
Radiation typeCu Kα, λ = 1.5418 Å
Specimen shape, size (mm)Flat sheet, 30 × 30
Data collection
DiffractometerHZG-4A (Carl Zeiss, Jena)
diffractometer
Specimen mountingPacked powder pellet
Data collection modeReflection
Scan methodStep
2θ values (°)2θmin = 5.000 2θmax = 100.000 2θstep = 0.020
Refinement
R factors and goodness of fitRp = 0.042, Rwp = 0.067, Rexp = 0.086, RBragg = 0.029, χ2 = 0.608
No. of data points4751
No. of parameters48
No. of restraints21
H-atom treatmentH-atom parameters constrained

Computer programs: local program, FULLPROF (Rodríguez-Carvajal, 2001) and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), FULLPROF (Rodríguez-Carvajal, 2001) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Cu—Cl2.234 (7)Cu—Cli3.008 (7)
Cu—N41.979 (10)Cu—Cuii4.9835 (4)
Cl—Cu—N489.8 (7)Cli—Cu—N492.6 (5)
Cl—Cu—Cli90.8 (2)N4—Cu—N4iii180
Cl—Cu—Cliii180Cliv—Cu—N487.4 (5)
Cl—Cu—N4iii90.2 (7)Cu—Cl—Cuii143.5 (2)
Cl—Cu—Cliv89.2 (2)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y, z+1; (iv) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.82002.35003.08 (3)149.00
O2—H2···N20.82002.46003.02 (3)126.00
C5—H5···Clii0.93002.72003.34 (2)126.00
Symmetry code: (ii) x, y+1/2, z+1/2.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDollase, W. A. (1986). J. Appl. Cryst. 19, 267–272.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationIvashkevich, D. O., Lyakhov, A. S., Gaponik, P. N., Bogatikov, A. N. & Govorova, A. A. (2001). Acta Cryst. E57, m335–m337.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIvashkevich, L. S., Lyakhov, A. S., Ivashkevich, D. O., Degtyarik, M. M. & Gaponik, P. N. (2005). Russ. J. Inorg. Chem. 50, 78–82.  Google Scholar
First citationIvashkevich, D. O., Voitekhovich, S. V. & Lyakhov, A. S. (2005). XXII International Chugaev Conference on Coordination Chemistry, Kishinev, 2005. Book of Abstracts, p. 371.  Google Scholar
First citationMarsh, A. (1932). Z. Kristallogr. 81, 285–297.  Google Scholar
First citationRodríguez-Carvajal, J. (2001). FULLPROF. CEA/Saclay, France.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStassen, A. F., Kooijman, H., Spek, A. L., Jos de Jongh, L., Haasnoot, J. G. & Reedijk, J. (2002). Inorg. Chem. 41, 6468–6473.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationVirovets, A. V., Baidina, I. A., Alekseev, V. I., Podberezskaya, N. V. & Lavrenova, L. G. (1996). Zh. Strukt. Khim. 37, 330–336.  CAS Google Scholar
First citationVirovets, A. V., Podberezskaya, N. V., Lavrenova, L. G. & Bikzhanova, G. A. (1995). Acta Cryst. C51, 1084–1087.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWerner, P.-E., Eriksson, L. & Westdahl, M. (1985). J. Appl. Cryst. 18, 367–370.  CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1044-m1045
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds