organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Hy­droxy­ethyl)-3,5-di­nitro­benzamide

aCollege of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China, and bAnalytical and Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: denganping6119@yahoo.com.cn

(Received 3 May 2008; accepted 27 June 2008; online 5 July 2008)

The title compound, C9H9N3O6, was synthesized by the condensation of methyl 3,5-dinitro­benzoate and 2-amino­ethanol. The non-centrosymmetric space group results in the formation of pseudo-chiral helices in the crystal structure, which exhibits a layer packing structure involving intra­molecular N—H⋯O and O—H⋯O inter­actions.

Related literature

For related literature, see: Lin & Smith (1981[Lin, Y. L. & Smith, K. R. (1981). US Patent 4 284 620.]); Morehouse & McGuire (1959[Morehouse, N. F. & McGuire, W. C. (1959). Poult. Sci. 38, 410-423.]); Percec (1981[Percec, V. (1981). Polym. Bull. 5, 651-657.], 1982[Percec, V. (1982). Polym. Prep. 23, 301-302.]); Walde (1962[Walde, A. W. (1962). US Patent 3 015 606.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9N3O6

  • Mr = 255.19

  • Orthorhombic, P 21 21 21

  • a = 6.514 (4) Å

  • b = 9.097 (3) Å

  • c = 18.177 (3) Å

  • V = 1077.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 294 (2) K

  • 0.46 × 0.45 × 0.33 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 1124 measured reflections

  • 1118 independent reflections

  • 945 reflections with I > 2σ(I)

  • Rint = 0.015

  • 3 standard reflections every 100 reflections intensity decay: 3.4%

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.092

  • S = 1.10

  • 1118 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2W⋯O1i 0.82 1.99 2.737 (3) 151
N1—H1N⋯O2i 0.86 2.12 2.935 (3) 158
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: DIFRAC (Gabe et al., 1993[Gabe, E. J., White, P. S. & Enright, G. D. (1993). DIFRAC. American Crystallographic Association, Pittsburgh meeting. Abstract PA104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Non-ionic contrast agents, which are used in the field of intravascular and central nervous system visualization, are mostly complex molecules. However, the iodine in the molecule provides opacification to the x-rays and the remainder of the molecule provides the framework for transport of the iodine atoms. As a result, the structural arrangement of the molecule is very important in providing stability, solubility and biological safety in various organs (Lin & Smith, 1981). The title compound is an important intermediate in the synthesis of a variety of these molecules. It also can be used against coccidiosis and salmonella infection in poultry (Walde, 1962; Morehouse & McGuire, 1959).In addition, it plays an important role in the synthesis of copolymers (Percec, 1982; Percec, 1981). In this paper, we report the crystal structure of the title compound, N-(2-hydroxyethyl)-3,5-dinitrobenzamide (Fig. 1).

The title compound was crystallized in the non-centrosymmetric space group P212121 in spite of having no asymmetric carbon atom in the molecule. In the packing structure, an intermolecular O—H···O hydrogen bond leads to form pseudo-chiral helix about the 21 screw axis, propagating in the [100] direction. Non-centrosymmetric space group P212121 results in the formation of pseudo-chiral helix in the packing structure (Fig. 2). The crystal structure exhibits a layer packing structure with the intramolecular N—H···O and O—H···O hydrogen bonds (Fig. 2 and Table 1; symmetry code as in Fig. 2). On the other hand, adjacent molecules are linked into chains through van der Waals force to stabilize the crystal structure.

Related literature top

For related literature, see: Dieltiens et al. (2006); Lin & Smith (1981); Morehouse & McGuire (1959); Percec (1981, 1982); Walde (1962).

Experimental top

A mixture of methyl 3,5-dinitrobenzoate (5.65 g, 0.025 mol) and 50% aqueous 2-aminoethanol (30.5 g, 0.5 mol) was stirred for 10 h at room temperture. Then 30 ml water was added and the crystalline product was collected. Recrystallization of the crude product from ethanol gave N-(2-hydroxyethyl)-3,5-dinitrobenzamide (m.p. 416-417 K) (Lin & Smith, 1981). Single crystals of the title compound were obtained and used for X-ray diffraction studies at room temperature.

Refinement top

All H atoms were placed in idealized positions {C—H = 0.93 Å% (aromatic); C—H = 0.97 Å% (methylene); N—H = 0.86 Å%; O—H = 0.82 Å%} and refined as riding, with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(O). Friedel pairs were merged at final refinement.

Computing details top

Data collection: DIFRAC (Gabe et al., 1993); cell refinement: DIFRAC (Gabe et al., 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the structure projected on the ac plane. Hydrogen bonding shown as dashed lines. [Symmetry code: (i) x+1/2, -y+3/2, -z+1; (ii) x+1, y, z.]
N-(2-Hydroxyethyl)-3,5-dinitrobenzamide top
Crystal data top
C9H9N3O6Dx = 1.574 Mg m3
Mr = 255.19Melting point = 416–417 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: p 2ac 2abCell parameters from 24 reflections
a = 6.514 (4) Åθ = 4.5–7.8°
b = 9.097 (3) ŵ = 0.14 mm1
c = 18.177 (3) ÅT = 294 K
V = 1077.1 (8) Å3Block, colourless
Z = 40.46 × 0.45 × 0.33 mm
F(000) = 528
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.015
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.2°
Graphite monochromatorh = 37
ω/2θ scansk = 410
1124 measured reflectionsl = 1021
1118 independent reflections3 standard reflections every 100 reflections
945 reflections with I > 2σ(I) intensity decay: 3.4%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0522P)2 + 0.1396P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1118 reflectionsΔρmax = 0.14 e Å3
164 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.219 (12)
Crystal data top
C9H9N3O6V = 1077.1 (8) Å3
Mr = 255.19Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.514 (4) ŵ = 0.14 mm1
b = 9.097 (3) ÅT = 294 K
c = 18.177 (3) Å0.46 × 0.45 × 0.33 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.015
1124 measured reflections3 standard reflections every 100 reflections
1118 independent reflections intensity decay: 3.4%
945 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.10Δρmax = 0.14 e Å3
1118 reflectionsΔρmin = 0.18 e Å3
164 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2873 (3)0.5989 (2)0.34735 (10)0.0471 (6)
O20.5044 (3)0.7755 (2)0.56083 (10)0.0476 (6)
H2W0.55350.81060.59850.071*
O30.5495 (4)0.6710 (3)0.02304 (11)0.0717 (8)
O40.3233 (5)0.5573 (4)0.08631 (13)0.1040 (12)
O51.0931 (4)0.9372 (3)0.26737 (12)0.0799 (9)
O61.1272 (4)0.8922 (3)0.15286 (11)0.0696 (8)
N10.5752 (4)0.6420 (2)0.41241 (11)0.0370 (6)
H1N0.69160.68650.41320.044*
N20.4757 (5)0.6333 (3)0.08103 (13)0.0535 (7)
N31.0356 (4)0.8822 (3)0.21046 (13)0.0464 (6)
C10.5713 (4)0.6903 (3)0.28124 (14)0.0316 (6)
C20.7552 (4)0.7679 (3)0.27890 (13)0.0332 (6)
H2A0.81860.79820.32220.040*
C30.8421 (4)0.7994 (3)0.21153 (14)0.0355 (6)
C40.7576 (4)0.7570 (3)0.14550 (13)0.0366 (7)
H40.82020.77790.10070.044*
C50.5739 (5)0.6816 (3)0.14983 (14)0.0386 (7)
C60.4801 (4)0.6487 (3)0.21553 (14)0.0358 (6)
H60.35560.59870.21590.043*
C70.4681 (4)0.6420 (3)0.35076 (14)0.0350 (7)
C80.5042 (5)0.5698 (3)0.47915 (13)0.0437 (7)
H8A0.54030.46640.47680.052*
H8B0.35570.57650.48150.052*
C90.5928 (4)0.6344 (3)0.54759 (14)0.0426 (7)
H9A0.56520.57000.58900.051*
H9B0.74040.64380.54240.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0326 (11)0.0647 (13)0.0441 (10)0.0133 (11)0.0046 (9)0.0125 (10)
O20.0324 (10)0.0700 (13)0.0405 (10)0.0039 (11)0.0015 (9)0.0121 (9)
O30.089 (2)0.0951 (17)0.0311 (11)0.0176 (17)0.0042 (13)0.0000 (11)
O40.103 (2)0.156 (3)0.0536 (14)0.079 (2)0.0175 (15)0.0111 (17)
O50.0793 (19)0.113 (2)0.0478 (13)0.0607 (17)0.0059 (12)0.0036 (13)
O60.0530 (14)0.104 (2)0.0523 (13)0.0241 (16)0.0145 (12)0.0089 (13)
N10.0305 (12)0.0486 (13)0.0319 (11)0.0083 (12)0.0060 (10)0.0000 (10)
N20.0617 (19)0.0631 (16)0.0356 (13)0.0109 (18)0.0113 (14)0.0048 (12)
N30.0415 (14)0.0577 (14)0.0400 (13)0.0152 (13)0.0011 (13)0.0105 (13)
C10.0287 (13)0.0319 (12)0.0341 (13)0.0022 (12)0.0013 (12)0.0024 (11)
C20.0334 (14)0.0363 (13)0.0300 (12)0.0038 (12)0.0027 (12)0.0013 (11)
C30.0320 (13)0.0378 (13)0.0367 (13)0.0040 (12)0.0003 (13)0.0023 (12)
C40.0415 (17)0.0383 (14)0.0300 (12)0.0006 (14)0.0033 (13)0.0031 (11)
C50.0442 (17)0.0414 (14)0.0303 (13)0.0005 (15)0.0081 (12)0.0026 (11)
C60.0281 (13)0.0400 (13)0.0391 (14)0.0011 (12)0.0031 (13)0.0039 (12)
C70.0310 (16)0.0392 (15)0.0346 (14)0.0051 (14)0.0027 (12)0.0081 (11)
C80.0455 (16)0.0502 (15)0.0354 (13)0.0075 (15)0.0068 (14)0.0031 (12)
C90.0345 (15)0.0576 (17)0.0356 (13)0.0019 (16)0.0030 (12)0.0081 (13)
Geometric parameters (Å, º) top
O1—C71.243 (4)C1—C71.498 (4)
O2—C91.428 (3)C2—C31.379 (3)
O2—H2W0.8200C2—H2A0.9300
O3—N21.208 (3)C3—C41.376 (4)
O4—N21.213 (4)C4—C51.382 (4)
O5—N31.209 (3)C4—H40.9300
O6—N31.209 (3)C5—C61.374 (4)
N1—C71.320 (3)C6—H60.9300
N1—C81.455 (3)C8—C91.492 (4)
N1—H1N0.8600C8—H8A0.9700
N2—C51.472 (4)C8—H8B0.9700
N3—C31.468 (3)C9—H9A0.9700
C1—C61.387 (3)C9—H9B0.9700
C1—C21.391 (4)
C9—O2—H2W109.5C6—C5—C4122.9 (2)
C7—N1—C8122.7 (2)C6—C5—N2118.7 (3)
C7—N1—H1N118.7C4—C5—N2118.4 (3)
C8—N1—H1N118.7C5—C6—C1119.9 (2)
O3—N2—O4123.8 (3)C5—C6—H6120.0
O3—N2—C5119.0 (3)C1—C6—H6120.0
O4—N2—C5117.3 (3)O1—C7—N1122.9 (3)
O6—N3—O5123.9 (2)O1—C7—C1118.4 (2)
O6—N3—C3118.3 (2)N1—C7—C1118.6 (2)
O5—N3—C3117.8 (2)N1—C8—C9113.2 (2)
C6—C1—C2118.8 (2)N1—C8—H8A108.9
C6—C1—C7117.0 (2)C9—C8—H8A108.9
C2—C1—C7124.2 (2)N1—C8—H8B108.9
C3—C2—C1119.1 (2)C9—C8—H8B108.9
C3—C2—H2A120.5H8A—C8—H8B107.7
C1—C2—H2A120.5O2—C9—C8109.8 (2)
C4—C3—C2123.5 (2)O2—C9—H9A109.7
C4—C3—N3118.4 (2)C8—C9—H9A109.7
C2—C3—N3118.1 (2)O2—C9—H9B109.7
C3—C4—C5115.9 (2)C8—C9—H9B109.7
C3—C4—H4122.1H9A—C9—H9B108.2
C5—C4—H4122.1
C6—C1—C2—C30.8 (3)O3—N2—C5—C45.8 (4)
C7—C1—C2—C3176.3 (2)O4—N2—C5—C4174.3 (3)
C1—C2—C3—C40.6 (4)C4—C5—C6—C10.8 (4)
C1—C2—C3—N3179.6 (2)N2—C5—C6—C1178.7 (2)
O6—N3—C3—C410.1 (4)C2—C1—C6—C51.4 (4)
O5—N3—C3—C4169.5 (3)C7—C1—C6—C5175.9 (3)
O6—N3—C3—C2169.7 (3)C8—N1—C7—O110.3 (4)
O5—N3—C3—C210.7 (4)C8—N1—C7—C1167.1 (2)
C2—C3—C4—C51.2 (4)C6—C1—C7—O116.4 (4)
N3—C3—C4—C5179.0 (2)C2—C1—C7—O1166.4 (2)
C3—C4—C5—C60.6 (4)C6—C1—C7—N1161.2 (2)
C3—C4—C5—N2180.0 (3)C2—C1—C7—N116.0 (4)
O3—N2—C5—C6174.7 (3)C7—N1—C8—C9154.7 (3)
O4—N2—C5—C65.2 (4)N1—C8—C9—O271.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2W···O1i0.821.992.737 (3)151
N1—H1N···O2i0.862.122.935 (3)158
Symmetry code: (i) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC9H9N3O6
Mr255.19
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)6.514 (4), 9.097 (3), 18.177 (3)
V3)1077.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.46 × 0.45 × 0.33
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1124, 1118, 945
Rint0.015
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.092, 1.10
No. of reflections1118
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.18

Computer programs: DIFRAC (Gabe et al., 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2W···O1i0.821.992.737 (3)150.7
N1—H1N···O2i0.862.122.935 (3)158.2
Symmetry code: (i) x+1/2, y+3/2, z+1.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (NSFC, contract No. 20675054) and the Promotion Program Foundation of Sichuan University of China (No. 0082204127090) for financial support of this study.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J., White, P. S. & Enright, G. D. (1993). DIFRAC. American Crystallographic Association, Pittsburgh meeting. Abstract PA104.  Google Scholar
First citationLin, Y. L. & Smith, K. R. (1981). US Patent 4 284 620.  Google Scholar
First citationMorehouse, N. F. & McGuire, W. C. (1959). Poult. Sci. 38, 410–423.  CrossRef CAS Google Scholar
First citationPercec, V. (1981). Polym. Bull. 5, 651–657.  CAS Google Scholar
First citationPercec, V. (1982). Polym. Prep. 23, 301–302.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWalde, A. W. (1962). US Patent 3 015 606.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds