metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[{μ-cyanido-bis­­[(4,4′-di­methyl-2,2′-bi­pyridine-κ2N,N′)copper(I)]}-μ-cyanido-copper(I)-μ-cyanido]

aDepartment of Chemistry, Shantou University, Shantou, Guangdong 515063, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 10 July 2008; accepted 22 July 2008; online 26 July 2008)

In the title compound, [Cu3(CN)3(C12H12N2)2], two 2,2′-bipyridine N,N′-chelated CuI atoms are linked by a cyanide bridge that lies about a center of inversion; the CuI atom exists in a tetra­hedral coordination geometry. This dinuclear entity is linked to another CuI atom that lies on a twofold rotation axis by another cyanide bridge, these bridges giving rise to the formation of a linear chain motif.

Related literature

Some copper(I) cyanide adducts with 2,2′-bipyridine-like ligands that adopt chain structures in which the cyanide group functions as a bridge are tris­cyano-bis­(2,2′-biquinoline)tri­cop­per (Chesnut et al., 2001[Chesnut, D. J., Kusnetzow, A., Birge, R. & Zubieta, J. (2001). J. Chem. Soc. Dalton Trans. pp. 2581-2586.]; Dessy et al., 1985[Dessy, G., Fares, V., Imperatori, P. & Morpurgo, G. O. (1985). J. Chem. Soc. Dalton Trans. pp. 1285-1288.]), tetra­kiscyano­(2,2′-biquinoline)tetra­copper (Chesnut & Zubieta, 1998[Chesnut, D. J. & Zubieta, J. (1998). J. Chem. Soc. Chem. Commun. pp. 1707-1708.]) and bis­cyano-(4,4′-diphenyl-2,2′-bipyridine)dicopper (Chesnut et al., 2001[Chesnut, D. J., Kusnetzow, A., Birge, R. & Zubieta, J. (2001). J. Chem. Soc. Dalton Trans. pp. 2581-2586.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu3(CN)3(C12H12N2)2]

  • Mr = 637.15

  • Monoclinic, C 2/c

  • a = 10.7196 (7) Å

  • b = 12.3700 (9) Å

  • c = 20.9182 (14) Å

  • β = 100.146 (1)°

  • V = 2730.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.34 mm−1

  • T = 295 (2) K

  • 0.30 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.540, Tmax = 0.705

  • 8685 measured reflections

  • 3125 independent reflections

  • 2491 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.110

  • S = 1.03

  • 3125 reflections

  • 170 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Winconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Winconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem., 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The cyanide group functions as a bridging group in a number of copper(I) adducts of 2,2'-bipyridine type of N-heterocycles. Those who crystal structure have been described include the triscyano-bis(2,2'-biquinoline)tricopper (Chesnut et al., 2001; Dessy et al., 1985), tetrakiscyano(2,2'-biquinoline)tetracopper (Chesnut & Zubieta, 1998) and biscyano-(4,4'-diphenyl-2,2'-bipyridine)dicopper (Chesnut et al., 2001).

The copper(I) cyanide adduct with 4,4'-dimethyl-2,2'-biyridine (Scheme 1, Fig. 1) adopts a similar chain motif. Two N-heterocycle-chelated copper(I) atoms are linked by a cyanide bridge that lies about a center-of-inversion; the copper(I) atom exists in a tetrahedral coordination geometry. This dinuclear entity is linked to copper(I) atom that lies on a twofold rotation axis by another cyanide bridge.

Related literature top

Some copper(I) cyanide adducts with 2,2'-bipyridine-like ligands that adopt chain structures in which the cyanide group functions as a bridge are triscyano-bis(2,2'-biquinoline)tricopper (Chesnut et al., 2001; Dessy et al., 1985), tetrakiscyano(2,2'-biquinoline)tetracopper (Chesnut & Zubieta, 1998) and biscyano-(4,4'-diphenyl-2,2'-bipyridine)dicopper (Chesnut et al., 2001).

Experimental top

4,4'-Dimethyl-2,2'-bipyridine (0.055 g, 0.3 mmol), cuprous cyanide (0.009 g, 0.1 mmol) and acetonitrile (8 ml) were placed in a 15-ml, teflon-lined autoclave. It was heated at 453 K for 72 hours, then was cooled to 333 K at a rate of 5 K per hour and then kept at this temperature for a further 10 hours before being cooled to room temperature. Red prisms were in 50% yield based on the N-heterocycle.

Refinement top

The component atoms of the cyanide groups were each refined as a 50%:50% mixture of carbon and nitrogen. The pair of C/N atoms were restrained to the same site and also to have the same temperature factors. Hydrogen atoms were placed at calculated positions in the riding model approximation with C—H = 0.93–0.98 Å and Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of a portion of the linear chain motif; probability levels are set at 50%.
catena-Poly[{µ-cyanido-bis[(4,4'-dimethyl-2,2'-bipyridine- κ2N,N')copper(I)]}-µ-cyanido-copper(I)-µ-cyanido] top
Crystal data top
[Cu3(CN)3(C12H12N2)2]F(000) = 1288
Mr = 637.15Dx = 1.550 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2750 reflections
a = 10.7196 (7) Åθ = 2.5–27.0°
b = 12.3700 (9) ŵ = 2.34 mm1
c = 20.9182 (14) ÅT = 295 K
β = 100.146 (1)°Block, red
V = 2730.4 (3) Å30.30 × 0.20 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3125 independent reflections
Radiation source: fine-focus sealed tube2491 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.540, Tmax = 0.705k = 1615
8685 measured reflectionsl = 1627
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.065P)2 + 0.8323P]
where P = (Fo2 + 2Fc2)/3
3125 reflections(Δ/σ)max = 0.001
170 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Cu3(CN)3(C12H12N2)2]V = 2730.4 (3) Å3
Mr = 637.15Z = 4
Monoclinic, C2/cMo Kα radiation
a = 10.7196 (7) ŵ = 2.34 mm1
b = 12.3700 (9) ÅT = 295 K
c = 20.9182 (14) Å0.30 × 0.20 × 0.16 mm
β = 100.146 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3125 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2491 reflections with I > 2σ(I)
Tmin = 0.540, Tmax = 0.705Rint = 0.024
8685 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.03Δρmax = 0.53 e Å3
3125 reflectionsΔρmin = 0.22 e Å3
170 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.74268 (3)0.41078 (2)0.072850 (16)0.04716 (14)
Cu20.50000.41827 (4)0.25000.05469 (16)
N10.75592 (19)0.54384 (16)0.01065 (10)0.0420 (5)
N20.92273 (18)0.47469 (15)0.11124 (9)0.0406 (4)
N30.6442 (3)0.41773 (18)0.14085 (14)0.0519 (6)0.50
N40.5915 (2)0.4184 (2)0.18400 (12)0.0502 (6)0.50
N50.7489 (2)0.28632 (17)0.01721 (11)0.0487 (6)0.50
C3'0.6442 (3)0.41773 (18)0.14085 (14)0.0519 (6)0.50
C4'0.5915 (2)0.4184 (2)0.18400 (12)0.0502 (6)0.50
C5'0.7489 (2)0.28632 (17)0.01721 (11)0.0487 (6)0.50
C10.6717 (3)0.5725 (2)0.04135 (14)0.0531 (6)
H10.59320.53840.04850.064*
C20.6951 (3)0.6501 (2)0.08494 (13)0.0562 (7)
H20.63250.66800.12000.067*
C30.8105 (3)0.7011 (2)0.07670 (12)0.0493 (6)
C40.8992 (2)0.67121 (18)0.02273 (12)0.0450 (6)
H40.97910.70300.01540.054*
C50.8687 (2)0.59363 (16)0.02044 (12)0.0385 (5)
C60.8409 (4)0.7858 (2)0.12307 (15)0.0699 (9)
H6A0.81170.76230.16690.105*
H6B0.93090.79700.11640.105*
H6C0.79970.85230.11560.105*
C70.9594 (2)0.56084 (18)0.07973 (11)0.0391 (5)
C81.0699 (2)0.61388 (19)0.10154 (13)0.0461 (6)
H81.09100.67390.07890.055*
C91.1516 (3)0.5801 (2)0.15691 (14)0.0523 (6)
C101.1131 (3)0.4918 (2)0.18924 (14)0.0559 (7)
H101.16340.46610.22700.067*
C111.0006 (3)0.4430 (2)0.16498 (13)0.0516 (6)
H110.97660.38370.18730.062*
C121.2752 (3)0.6366 (3)0.18039 (18)0.0781 (10)
H12A1.30380.62030.22550.117*
H12B1.26350.71330.17510.117*
H12C1.33720.61250.15560.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0535 (2)0.0446 (2)0.0483 (2)0.01261 (12)0.02281 (16)0.00397 (12)
Cu20.0494 (3)0.0793 (4)0.0406 (3)0.0000.0223 (2)0.000
N10.0483 (11)0.0401 (10)0.0402 (12)0.0070 (8)0.0149 (9)0.0055 (8)
N20.0469 (10)0.0416 (10)0.0376 (11)0.0031 (8)0.0193 (9)0.0007 (8)
N30.0530 (13)0.0527 (14)0.0522 (15)0.0098 (10)0.0152 (12)0.0068 (10)
N40.0469 (13)0.0700 (16)0.0387 (13)0.0049 (10)0.0214 (11)0.0049 (10)
N50.0560 (13)0.0453 (12)0.0514 (15)0.0154 (10)0.0281 (11)0.0066 (9)
C3'0.0530 (13)0.0527 (14)0.0522 (15)0.0098 (10)0.0152 (12)0.0068 (10)
C4'0.0469 (13)0.0700 (16)0.0387 (13)0.0049 (10)0.0214 (11)0.0049 (10)
C5'0.0560 (13)0.0453 (12)0.0514 (15)0.0154 (10)0.0281 (11)0.0066 (9)
C10.0539 (15)0.0559 (15)0.0491 (16)0.0090 (12)0.0082 (13)0.0071 (12)
C20.0655 (16)0.0599 (16)0.0415 (15)0.0020 (13)0.0047 (13)0.0003 (12)
C30.0678 (16)0.0432 (12)0.0409 (14)0.0022 (12)0.0206 (13)0.0002 (10)
C40.0525 (14)0.0423 (13)0.0451 (14)0.0055 (10)0.0221 (11)0.0005 (10)
C50.0457 (12)0.0370 (11)0.0365 (13)0.0020 (9)0.0175 (10)0.0035 (9)
C60.098 (2)0.0630 (18)0.0550 (19)0.0058 (16)0.0312 (17)0.0142 (14)
C70.0456 (13)0.0367 (11)0.0400 (13)0.0031 (9)0.0216 (11)0.0021 (9)
C80.0501 (14)0.0424 (12)0.0482 (15)0.0047 (10)0.0153 (12)0.0046 (10)
C90.0506 (14)0.0537 (15)0.0530 (17)0.0049 (11)0.0103 (12)0.0013 (11)
C100.0554 (15)0.0640 (17)0.0473 (16)0.0013 (13)0.0066 (12)0.0101 (13)
C110.0628 (16)0.0484 (13)0.0474 (15)0.0050 (12)0.0201 (13)0.0069 (12)
C120.0605 (18)0.080 (2)0.086 (2)0.0172 (16)0.0074 (17)0.0093 (19)
Geometric parameters (Å, º) top
Cu1—N12.118 (2)C4—C51.395 (3)
Cu1—N22.109 (2)C4—H40.9300
Cu1—N31.917 (3)C5—C71.491 (3)
Cu1—N51.938 (2)C6—H6A0.9600
Cu2—N41.829 (2)C6—H6B0.9600
Cu2—N4i1.829 (2)C6—H6C0.9600
N1—C11.333 (3)C7—C81.361 (4)
N1—C51.340 (3)C8—C91.388 (4)
N2—C111.336 (3)C8—H80.9300
N2—C71.347 (3)C9—C101.385 (4)
N3—N41.146 (4)C9—C121.502 (4)
N5—C5'ii1.154 (4)C10—C111.364 (4)
C1—C21.377 (4)C10—H100.9300
C1—H10.9300C11—H110.9300
C2—C31.372 (4)C12—H12A0.9600
C2—H20.9300C12—H12B0.9600
C3—C41.392 (4)C12—H12C0.9600
C3—C61.503 (4)
N3—Cu1—N5124.25 (9)N1—C5—C4121.7 (2)
N3—Cu1—N2106.70 (9)N1—C5—C7116.1 (2)
N5—Cu1—N2113.61 (9)C4—C5—C7122.2 (2)
N3—Cu1—N1121.75 (9)C3—C6—H6A109.5
N5—Cu1—N1103.61 (9)C3—C6—H6B109.5
N2—Cu1—N177.69 (7)H6A—C6—H6B109.5
N4—Cu2—C4'i179.88 (15)C3—C6—H6C109.5
C4'i—Cu2—N4i0.00 (12)H6A—C6—H6C109.5
C1—N1—C5117.7 (2)H6B—C6—H6C109.5
C1—N1—Cu1126.79 (17)N2—C7—C8121.9 (2)
C5—N1—Cu1114.80 (16)N2—C7—C5114.8 (2)
C11—N2—C7116.8 (2)C8—C7—C5123.3 (2)
C11—N2—Cu1127.21 (16)C7—C8—C9121.3 (2)
C7—N2—Cu1115.86 (16)C7—C8—H8119.4
N4—N3—Cu1175.6 (3)C9—C8—H8119.4
N3—N4—Cu2177.1 (3)C10—C9—C8116.5 (2)
C5'ii—N5—Cu1178.3 (3)C10—C9—C12121.9 (3)
N5ii—N5—Cu1178.3 (3)C8—C9—C12121.6 (3)
N1—C1—C2123.4 (2)C11—C10—C9119.2 (3)
N1—C1—H1118.3C11—C10—H10120.4
C2—C1—H1118.3C9—C10—H10120.4
C3—C2—C1120.2 (3)N2—C11—C10124.3 (2)
C3—C2—H2119.9N2—C11—H11117.8
C1—C2—H2119.9C10—C11—H11117.8
C2—C3—C4116.8 (2)C9—C12—H12A109.5
C2—C3—C6122.2 (3)C9—C12—H12B109.5
C4—C3—C6120.9 (2)H12A—C12—H12B109.5
C3—C4—C5120.2 (2)C9—C12—H12C109.5
C3—C4—H4119.9H12A—C12—H12C109.5
C5—C4—H4119.9H12B—C12—H12C109.5
N3—Cu1—N1—C181.2 (2)C1—N1—C5—C7178.9 (2)
N5—Cu1—N1—C164.9 (2)Cu1—N1—C5—C79.9 (2)
N2—Cu1—N1—C1176.6 (2)C3—C4—C5—N11.8 (3)
N3—Cu1—N1—C5108.54 (18)C3—C4—C5—C7178.5 (2)
N5—Cu1—N1—C5105.30 (17)C11—N2—C7—C80.4 (3)
N2—Cu1—N1—C56.36 (15)Cu1—N2—C7—C8176.04 (18)
N3—Cu1—N2—C1154.7 (2)C11—N2—C7—C5179.5 (2)
N5—Cu1—N2—C1185.9 (2)Cu1—N2—C7—C53.0 (2)
N1—Cu1—N2—C11174.5 (2)N1—C5—C7—N28.7 (3)
N3—Cu1—N2—C7121.34 (17)C4—C5—C7—N2171.0 (2)
N5—Cu1—N2—C798.09 (17)N1—C5—C7—C8170.4 (2)
N1—Cu1—N2—C71.55 (15)C4—C5—C7—C810.0 (4)
C5—N1—C1—C20.0 (4)N2—C7—C8—C91.3 (4)
Cu1—N1—C1—C2170.0 (2)C5—C7—C8—C9179.7 (2)
N1—C1—C2—C31.1 (4)C7—C8—C9—C101.5 (4)
C1—C2—C3—C40.7 (4)C7—C8—C9—C12178.5 (3)
C1—C2—C3—C6179.7 (3)C8—C9—C10—C111.0 (4)
C2—C3—C4—C50.7 (4)C12—C9—C10—C11179.1 (3)
C6—C3—C4—C5179.0 (2)C7—N2—C11—C100.2 (4)
C1—N1—C5—C41.4 (3)Cu1—N2—C11—C10176.2 (2)
Cu1—N1—C5—C4169.76 (17)C9—C10—C11—N20.1 (5)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Cu3(CN)3(C12H12N2)2]
Mr637.15
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)10.7196 (7), 12.3700 (9), 20.9182 (14)
β (°) 100.146 (1)
V3)2730.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.34
Crystal size (mm)0.30 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.540, 0.705
No. of measured, independent and
observed [I > 2σ(I)] reflections
8685, 3125, 2491
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.110, 1.03
No. of reflections3125
No. of parameters170
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.22

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

 

Acknowledgements

The authors thank Shantou University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem., 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Winconsin, USA.  Google Scholar
First citationChesnut, D. J., Kusnetzow, A., Birge, R. & Zubieta, J. (2001). J. Chem. Soc. Dalton Trans. pp. 2581–2586.  Web of Science CSD CrossRef Google Scholar
First citationChesnut, D. J. & Zubieta, J. (1998). J. Chem. Soc. Chem. Commun. pp. 1707–1708.  CrossRef Google Scholar
First citationDessy, G., Fares, V., Imperatori, P. & Morpurgo, G. O. (1985). J. Chem. Soc. Dalton Trans. pp. 1285–1288.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds