metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1053-m1054

Di-μ-chlorido-bis­­[di­chlorido(3,3′,5,5′-tetra­methyl-4,4′-bipyrazol-1-ium-κN2′)copper(II)] dihydrate

aSchool of Chemistry, University of Bristol, Bristol BS8 1TS, England
*Correspondence e-mail: guy.orpen@bris.ac.uk

(Received 26 June 2008; accepted 18 July 2008; online 23 July 2008)

The structure of the centrosymmetric title compound, [Cu2Cl6(C10H15N4)2]·2H2O, consists of a dimeric [{(HMe4bpz)CuCl3}2] unit (HMe4bpz is 3,3′,5,5′-tetra­methyl-4,4′-bipyrazol-1-ium) with two solvent water molecules. Each [HMe4bpz]+ cation is bonded to a CuCl3 unit through a Cu—N dative bond, effectively making square-planar geometry at the Cu atom. Two of these units then undergo a face-to-face dimerization so that the Cu atoms have a Jahn–Teller distorted square-pyramidal geometry with three chlorides and an N atom in the basal plane and one chloride weakly bound in the apical position. Several N—H⋯Cl, O—H⋯Cl and N—H⋯O hydrogen bonds form a three-dimensional network.

Related literature

We have been unable to find any references in the literature to any other compound containing a monoprotonated 3,3′,5,5′- tetra­methyl­bipyrazole ligand coordinated only to one metal atom through a single nitro­gen donor, but Komarchuk et al. (2004[Komarchuk, V. V., Ponomarova, V. V., Krautscheid, H. & Domasevitch, K. V. (2004). Z. Anorg. Allg. Chem. 630, 1413-1418.]) reported a compound containing two unprotonated tetra­methyl­bipyrazole ligands acting as ligands to a single copper atom. For an exploration of N—H⋯Cl interactions in the design and synthesis of crystal structures with desired properties such as unit-cell metrics or defined reactivity, see: Adams et al. (2005[Adams, C. J., Crawford, P. C., Orpen, A. G., Podesta, T. J. & Salt, B. (2005). Chem. Commun. pp. 2457-2458.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Cl6(C10H15N4)2]·2H2O

  • Mr = 758.35

  • Triclinic, [P \overline 1]

  • a = 8.2837 (4) Å

  • b = 10.5907 (6) Å

  • c = 10.9058 (6) Å

  • α = 102.4385 (9)°

  • β = 108.4401 (9)°

  • γ = 110.2613 (8)°

  • V = 792.70 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.88 mm−1

  • T = 173 (2) K

  • 0.2 × 0.13 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.787, Tmax = 0.87

  • 8466 measured reflections

  • 3609 independent reflections

  • 3242 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.064

  • S = 1.04

  • 3609 reflections

  • 182 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N2 1.9834 (13)
Cu1—Cl1 2.2684 (5)
Cu1—Cl3 2.2988 (4)
Cu1—Cl2 2.3345 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.88 2.43 3.2625 (14) 157
N3—H3A⋯O1ii 0.88 1.80 2.6786 (19) 173
N4—H4A⋯Cl3iii 0.88 2.26 3.1435 (14) 179
O1—H11⋯Cl1iv 0.811 (15) 2.519 (17) 3.2640 (14) 153 (2)
O1—H11⋯Cl3iv 0.811 (15) 2.74 (2) 3.3031 (14) 128.5 (19)
O1—H12⋯Cl2v 0.800 (15) 2.404 (16) 3.1923 (14) 169 (2)
Symmetry codes: (i) -x+2, -y+3, -z+1; (ii) x, y, z-1; (iii) x, y-1, z; (iv) -x+2, -y+2, -z+1; (v) x-1, y-1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We have sought to explore N—H···Cl interactions in designing and synthesizing crystal structures with desired properties such as unit cell metrics or defined reactivity (Adams et al., 2005). We aimed to utilize these interactions by reacting 3,3',5,5'- tetramethylbipyrazole dihydrochloride and copper(II) chloride dihydrate in a 1:1 ratio to synthesize (C10H16N4)[CuCl4]. However, the title compound I was obtained instead, crystallizing in the triclinic system with the P1 space group, with a [HMe4bpz]+ cation bonded to a CuCl3- unit through a Cu—N bond, forming a zwitterion. In the crystal structure, water molecules bridge adjacent [{(HMe4bpz)CuCl3}2] dimers through O—H···Cl hydrogen bonds forming a hydrogen bonded ribbon (Fig. 2) along the a-axis.

Related literature top

We have been unable to find any references in the literature to any other compound containing a monoprotonated 3,3',5,5'- tetramethylbipyrazole ligand coordinated only to one metal atom through a single nitrogen donor, but Komarchuk et al. (2004) reported a compound containing two unprotonated tetramethylbipyrazole ligands acting as ligands to a single copper atom.

For related literature, see: Adams et al. (2005).

Experimental top

An attempt to synthesize tetramethylbipyrazolium tetrachlorocuprate(II) by slow evaporation at room temperature of a solution of equimolar amounts of tetramethylbipyrazole hydrochloride and copper(II) chloride dihydrate in concentrated HCl resulted in the formation of the title compound as a by-product in the form of pale green, plate-like crystals.

Refinement top

H atoms bonded to O atoms were located in a difference map and refined with distance restraints of O—H = 0.84 (2) Å with Uiso(H) = 1.2Ueq(O). Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.98 Å and N—H = 0.88 Å, with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C, N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The molecular structure of I with atom labels and 50% probability displacement ellipsoids for non-H atoms. [Symmetry codes: (A) -x + 2, -y + 3, -z + 1; (B) x, y - 1, z]
[Figure 2] Fig. 2. Packing of I viewed down the c axis, with O—H···Cl bonds connecting the dimeric units.
Di-µ-chlorido-bis[dichlorido(3,3',5,5'- tetramethyl-4,4'-bipyrazol-1-ium-κN2')copper(II)] dihydrate top
Crystal data top
[Cu2Cl6(C10H15N4)2]·2H2OZ = 1
Mr = 758.35F(000) = 386
Triclinic, P1Dx = 1.589 Mg m3
a = 8.2837 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5907 (6) ÅCell parameters from 5647 reflections
c = 10.9058 (6) Åθ = 2.4–27.5°
α = 102.4385 (9)°µ = 1.88 mm1
β = 108.4401 (9)°T = 173 K
γ = 110.2613 (8)°Plate, green
V = 792.70 (7) Å30.2 × 0.13 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3609 independent reflections
Radiation source: fine-focus sealed tube3242 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1010
Tmin = 0.787, Tmax = 0.87k = 1313
8466 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0305P)2 + 0.3154P]
where P = (Fo2 + 2Fc2)/3
3609 reflections(Δ/σ)max = 0.002
182 parametersΔρmax = 0.39 e Å3
2 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Cu2Cl6(C10H15N4)2]·2H2Oγ = 110.2613 (8)°
Mr = 758.35V = 792.70 (7) Å3
Triclinic, P1Z = 1
a = 8.2837 (4) ÅMo Kα radiation
b = 10.5907 (6) ŵ = 1.88 mm1
c = 10.9058 (6) ÅT = 173 K
α = 102.4385 (9)°0.2 × 0.13 × 0.08 mm
β = 108.4401 (9)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3609 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
3242 reflections with I > 2σ(I)
Tmin = 0.787, Tmax = 0.87Rint = 0.023
8466 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0242 restraints
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.39 e Å3
3609 reflectionsΔρmin = 0.34 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.11358 (3)1.463916 (19)0.381212 (19)0.01706 (7)
Cl11.38009 (6)1.67695 (4)0.47299 (5)0.02431 (10)
Cl21.16045 (6)1.45959 (4)0.60262 (4)0.02086 (9)
Cl31.04245 (6)1.46073 (4)0.15868 (4)0.02189 (10)
N10.7878 (2)1.19314 (14)0.32487 (14)0.0185 (3)
H1A0.74001.24350.36370.022*
N20.9482 (2)1.25267 (14)0.30738 (14)0.0178 (3)
N30.7030 (2)0.64464 (15)0.01465 (15)0.0210 (3)
H3A0.63520.56320.05790.025*
N40.8615 (2)0.67473 (15)0.12509 (15)0.0217 (3)
H4A0.91360.61590.13560.026*
C10.5323 (3)0.9567 (2)0.2828 (2)0.0291 (4)
H1B0.52231.01030.36310.044*
H1C0.53580.86770.29230.044*
H1D0.42200.93250.19770.044*
C20.7099 (2)1.04760 (17)0.27573 (17)0.0185 (3)
C30.8267 (2)1.01087 (17)0.22334 (16)0.0167 (3)
C40.9734 (2)1.14256 (17)0.24501 (16)0.0172 (3)
C51.1377 (3)1.16715 (19)0.2077 (2)0.0261 (4)
H5A1.14361.23240.15590.039*
H5B1.12101.07460.15010.039*
H5C1.25611.21060.29260.039*
C60.4994 (3)0.7602 (2)0.0706 (2)0.0310 (4)
H6A0.47760.70670.16420.047*
H6B0.52480.86020.06070.047*
H6C0.38620.71440.05530.047*
C70.6656 (2)0.75913 (17)0.03346 (17)0.0192 (3)
C80.8057 (2)0.86539 (17)0.16027 (17)0.0171 (3)
C90.9272 (2)0.80751 (17)0.21604 (18)0.0194 (3)
C101.0961 (3)0.8699 (2)0.3517 (2)0.0290 (4)
H10A1.16790.81340.34990.044*
H10B1.05420.86710.42600.044*
H10C1.17750.97030.36840.044*
O10.50412 (19)0.40901 (14)0.78153 (14)0.0258 (3)
H110.570 (3)0.402 (2)0.741 (2)0.031*
H120.413 (3)0.410 (2)0.729 (2)0.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02091 (11)0.01281 (11)0.01527 (11)0.00629 (8)0.00744 (8)0.00371 (8)
Cl10.0229 (2)0.01816 (19)0.0263 (2)0.00477 (16)0.01237 (17)0.00262 (16)
Cl20.0242 (2)0.0218 (2)0.0157 (2)0.01139 (16)0.00700 (16)0.00580 (15)
Cl30.0302 (2)0.0242 (2)0.0190 (2)0.01682 (18)0.01283 (17)0.01042 (16)
N10.0212 (7)0.0162 (7)0.0193 (7)0.0090 (6)0.0104 (6)0.0050 (5)
N20.0208 (7)0.0148 (6)0.0168 (7)0.0072 (6)0.0085 (6)0.0045 (5)
N30.0246 (7)0.0150 (7)0.0197 (7)0.0082 (6)0.0085 (6)0.0026 (6)
N40.0265 (7)0.0186 (7)0.0239 (8)0.0138 (6)0.0112 (6)0.0080 (6)
C10.0264 (9)0.0215 (9)0.0384 (11)0.0074 (7)0.0192 (8)0.0069 (8)
C20.0202 (8)0.0166 (8)0.0171 (8)0.0085 (7)0.0068 (6)0.0051 (6)
C30.0180 (7)0.0152 (7)0.0144 (8)0.0074 (6)0.0049 (6)0.0042 (6)
C40.0204 (8)0.0157 (7)0.0145 (8)0.0087 (6)0.0061 (6)0.0047 (6)
C50.0269 (9)0.0202 (8)0.0331 (10)0.0099 (7)0.0172 (8)0.0075 (7)
C60.0270 (9)0.0258 (9)0.0267 (10)0.0127 (8)0.0001 (8)0.0012 (8)
C70.0214 (8)0.0163 (8)0.0197 (8)0.0084 (6)0.0093 (7)0.0056 (6)
C80.0194 (7)0.0148 (7)0.0183 (8)0.0081 (6)0.0086 (6)0.0065 (6)
C90.0217 (8)0.0177 (8)0.0206 (8)0.0094 (7)0.0095 (7)0.0087 (7)
C100.0264 (9)0.0269 (9)0.0284 (10)0.0125 (8)0.0040 (8)0.0110 (8)
O10.0243 (7)0.0271 (7)0.0245 (7)0.0119 (6)0.0117 (6)0.0043 (5)
Geometric parameters (Å, º) top
Cu1—N21.9834 (13)C2—C31.388 (2)
Cu1—Cl12.2684 (5)C3—C41.407 (2)
Cu1—Cl32.2988 (4)C3—C81.470 (2)
Cu1—Cl22.3345 (4)C4—C51.495 (2)
Cu1—Cl2i2.7029 (5)C5—H5A0.9800
Cl2—Cu1i2.7029 (5)C5—H5B0.9800
N1—C21.348 (2)C5—H5C0.9800
N1—N21.3538 (19)C6—C71.487 (2)
N1—H1A0.8800C6—H6A0.9800
N2—C41.335 (2)C6—H6B0.9800
N3—C71.342 (2)C6—H6C0.9800
N3—N41.349 (2)C7—C81.391 (2)
N3—H3A0.8800C8—C91.400 (2)
N4—C91.336 (2)C9—C101.487 (2)
N4—H4A0.8800C10—H10A0.9800
C1—C21.490 (2)C10—H10B0.9800
C1—H1B0.9800C10—H10C0.9800
C1—H1C0.9800O1—H110.811 (15)
C1—H1D0.9800O1—H120.800 (15)
N2—Cu1—Cl1159.99 (4)C2—C3—C8127.73 (15)
N2—Cu1—Cl390.16 (4)C4—C3—C8126.42 (14)
Cl1—Cu1—Cl392.769 (17)N2—C4—C3109.72 (14)
N2—Cu1—Cl287.45 (4)N2—C4—C5121.50 (15)
Cl1—Cu1—Cl290.762 (17)C3—C4—C5128.78 (14)
Cl3—Cu1—Cl2175.537 (17)C4—C5—H5A109.5
N2—Cu1—Cl2i95.31 (4)C4—C5—H5B109.5
Cl1—Cu1—Cl2i104.333 (16)H5A—C5—H5B109.5
Cl3—Cu1—Cl2i92.434 (14)C4—C5—H5C109.5
Cl2—Cu1—Cl2i84.042 (14)H5A—C5—H5C109.5
Cu1—Cl2—Cu1i95.958 (14)H5B—C5—H5C109.5
C2—N1—N2111.89 (13)C7—C6—H6A109.5
C2—N1—H1A124.1C7—C6—H6B109.5
N2—N1—H1A124.1H6A—C6—H6B109.5
C4—N2—N1106.26 (13)C7—C6—H6C109.5
C4—N2—Cu1130.17 (11)H6A—C6—H6C109.5
N1—N2—Cu1123.33 (10)H6B—C6—H6C109.5
C7—N3—N4108.88 (13)N3—C7—C8107.84 (14)
C7—N3—H3A125.6N3—C7—C6122.10 (15)
N4—N3—H3A125.6C8—C7—C6130.06 (15)
C9—N4—N3109.65 (13)C7—C8—C9106.25 (14)
C9—N4—H4A125.2C7—C8—C3127.55 (14)
N3—N4—H4A125.2C9—C8—C3126.19 (15)
C2—C1—H1B109.5N4—C9—C8107.39 (15)
C2—C1—H1C109.5N4—C9—C10122.58 (15)
H1B—C1—H1C109.5C8—C9—C10130.00 (15)
C2—C1—H1D109.5C9—C10—H10A109.5
H1B—C1—H1D109.5C9—C10—H10B109.5
H1C—C1—H1D109.5H10A—C10—H10B109.5
N1—C2—C3106.28 (15)C9—C10—H10C109.5
N1—C2—C1122.23 (15)H10A—C10—H10C109.5
C3—C2—C1131.49 (15)H10B—C10—H10C109.5
C2—C3—C4105.84 (14)H11—O1—H12107 (2)
N2—Cu1—Cl2—Cu1i95.61 (4)N1—N2—C4—C5179.50 (15)
Cl1—Cu1—Cl2—Cu1i104.331 (16)Cu1—N2—C4—C56.1 (2)
Cl2i—Cu1—Cl2—Cu1i0.0C2—C3—C4—N20.31 (18)
C2—N1—N2—C40.25 (18)C8—C3—C4—N2178.69 (15)
C2—N1—N2—Cu1174.59 (11)C2—C3—C4—C5179.52 (17)
Cl1—Cu1—N2—C427.4 (2)C8—C3—C4—C51.5 (3)
Cl3—Cu1—N2—C471.20 (14)N4—N3—C7—C80.06 (19)
Cl2—Cu1—N2—C4112.57 (14)N4—N3—C7—C6179.90 (16)
Cl2i—Cu1—N2—C4163.66 (14)N3—C7—C8—C90.39 (19)
Cl1—Cu1—N2—N1146.16 (10)C6—C7—C8—C9179.78 (18)
Cl3—Cu1—N2—N1115.29 (12)N3—C7—C8—C3178.39 (16)
Cl2—Cu1—N2—N160.94 (12)C6—C7—C8—C31.4 (3)
Cl2i—Cu1—N2—N122.83 (12)C2—C3—C8—C769.0 (3)
C7—N3—N4—C90.32 (19)C4—C3—C8—C7112.3 (2)
N2—N1—C2—C30.06 (18)C2—C3—C8—C9112.5 (2)
N2—N1—C2—C1179.98 (15)C4—C3—C8—C966.3 (2)
N1—C2—C3—C40.15 (18)N3—N4—C9—C80.56 (19)
C1—C2—C3—C4179.81 (18)N3—N4—C9—C10177.32 (16)
N1—C2—C3—C8178.83 (15)C7—C8—C9—N40.58 (19)
C1—C2—C3—C81.2 (3)C3—C8—C9—N4178.22 (16)
N1—N2—C4—C30.34 (17)C7—C8—C9—C10177.09 (18)
Cu1—N2—C4—C3174.02 (11)C3—C8—C9—C104.1 (3)
Symmetry code: (i) x+2, y+3, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.882.433.2625 (14)157
N3—H3A···O1ii0.881.802.6786 (19)173
N4—H4A···Cl3iii0.882.263.1435 (14)179
O1—H11···Cl1iv0.81 (2)2.52 (2)3.2640 (14)153 (2)
O1—H11···Cl3iv0.81 (2)2.74 (2)3.3031 (14)129 (2)
O1—H12···Cl2v0.80 (2)2.40 (2)3.1923 (14)169 (2)
Symmetry codes: (i) x+2, y+3, z+1; (ii) x, y, z1; (iii) x, y1, z; (iv) x+2, y+2, z+1; (v) x1, y1, z.

Experimental details

Crystal data
Chemical formula[Cu2Cl6(C10H15N4)2]·2H2O
Mr758.35
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.2837 (4), 10.5907 (6), 10.9058 (6)
α, β, γ (°)102.4385 (9), 108.4401 (9), 110.2613 (8)
V3)792.70 (7)
Z1
Radiation typeMo Kα
µ (mm1)1.88
Crystal size (mm)0.2 × 0.13 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.787, 0.87
No. of measured, independent and
observed [I > 2σ(I)] reflections
8466, 3609, 3242
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.064, 1.04
No. of reflections3609
No. of parameters182
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.34

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b).

Selected bond lengths (Å) top
Cu1—N21.9834 (13)Cu1—Cl32.2988 (4)
Cu1—Cl12.2684 (5)Cu1—Cl22.3345 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.882.433.2625 (14)156.9
N3—H3A···O1ii0.881.802.6786 (19)173.2
N4—H4A···Cl3iii0.882.263.1435 (14)178.8
O1—H11···Cl1iv0.811 (15)2.519 (17)3.2640 (14)153 (2)
O1—H11···Cl3iv0.811 (15)2.74 (2)3.3031 (14)128.5 (19)
O1—H12···Cl2v0.800 (15)2.404 (16)3.1923 (14)169 (2)
Symmetry codes: (i) x+2, y+3, z+1; (ii) x, y, z1; (iii) x, y1, z; (iv) x+2, y+2, z+1; (v) x1, y1, z.
 

Acknowledgements

MAK thanks Bayero University, Kano, Nigeria for funding.

References

First citationAdams, C. J., Crawford, P. C., Orpen, A. G., Podesta, T. J. & Salt, B. (2005). Chem. Commun. pp. 2457–2458.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKomarchuk, V. V., Ponomarova, V. V., Krautscheid, H. & Domasevitch, K. V. (2004). Z. Anorg. Allg. Chem. 630, 1413–1418.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1053-m1054
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds