metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m987-m988

Tetra­kis(1,2-di­meth­oxy­ethane-κ2O,O′)ytterbium(II) bis­­(μ2-phenyl­selenolato-κ2Se:Se)bis­­[bis­­(phenyl­selenolato-κSe)mercurate(II)]

aDepartment of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8087, USA
*Correspondence e-mail: romanell@rci.rutgers.edu

(Received 6 June 2008; accepted 24 June 2008; online 5 July 2008)

The title salt, [Yb(C4H10O2)4][Hg2(C6H5Se)6], consists of eight-coordinate homoleptic [Yb(DME)4]2+ dications (DME is 1,2-dimethoxy­ethane) countered with [Hg2(SePh)6]2− di­anions. The cations and anions have twofold rotation and inversion symmetry, respectively. The Yb centre displays a square-anti­prismatic coordination geometry and the Hg centre has a distorted tetra­hedral coordination environment. One phenyl­selenolate anion and one methyl group of a DME ligand are disordered over two positions with equal occupancies. This structure is unique in that it represents a less common mol­ecular lanthanide species in which the lanthanide ion is not directly bonded to an anionic ligand. There are no occurrences of the [Hg2(SePh)6]2− dianion in the Cambridge Structural Database (Version of November 2007), but there are similar oligomeric and polymeric Hgx(SePh)y species. The crystal structure is characterized by alternating layers of cations and anions stacked along the c axis.

Related literature

For the synthesis and crystal structures of related compounds see: Berardini et al. (1995[Berardini, M., Emge, T. J. & Brennan, J. G. (1995). Inorg. Chem. 34, 53275334.]); Bettenhausen & Fenske (1998[Bettenhausen, M. & Fenske, D. (1998). Z. Anorg. Allg. Chem. 624, 1245-1246.]); Deacon et al. (2001[Deacon, G. B., Forsyth, C. M. & Wilkinson, D. L. (2001). Chem. Eur. J. 7, 1784-1795.]); Evans et al. (2000[Evans, W. J., Allen, N. T. & Ziller, J. W. (2000). J. Am. Chem. Soc. 122, 11749-11750.]); Freedman et al. (1997[Freedman, D., Emge, T. J. & Brennan, J. G. (1997). J. Am. Chem. Soc. 119, 11112-11113.]); Hyeon & Edelmann (2003[Hyeon, J. Y. & Edelmann, F. T. (2003). Coord. Chem. Rev. 247, 21-78.]); Hakansson et al. (1999[Hakansson, M., Vestergren, M., Gustafsson, B. & Hilmersson, G. (1999). Angew. Chem. Int. Ed. Engl. 38, 2199-2201.]); Kim & Kanatzidis (1991[Kim, K. W. & Kanatzidis, M. G. (1991). Inorg. Chem. 30, 1966- 1969.]); Magull et al. (1991[Magull, S., Neumuller, B. & Dehnicke, K. (1991). Z. Naturforsch. Teil B, 46, 985-991.]); Melman et al. (2002[Melman, J. H., Rohde, C., Emge, T. J. & Brennan, J. G. (2002). Inorg. Chem. 41, 28-33.]); Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Allen et al. (1991[Allen, F. H., Davies, J. E., Galloy, J. J., Johnson, O., Kennard, O., Macrae, C. F., Mitchell, E. M., Mitchell, G. F., Smith, J. M. & &Watson, D. G. (1991). J. Chem. Inf. Comput. Sci. 31, 187-204.]).

[Scheme 1]

Experimental

Crystal data
  • [Yb(C4H10O2)4][Hg2(C6H5Se)6]

  • Mr = 1871.06

  • Monoclinic, C 2/c

  • a = 22.688 (3) Å

  • b = 12.354 (2) Å

  • c = 22.843 (3) Å

  • β = 114.218 (3)°

  • V = 5839.1 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.62 mm−1

  • T = 100 (2) K

  • 0.17 × 0.14 × 0.02 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.18, Tmax = 0.81

  • 26008 measured reflections

  • 5956 independent reflections

  • 4806 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.064

  • S = 1.00

  • 5956 reflections

  • 389 parameters

  • 734 restraints

  • H-atom parameters constrained

  • Δρmax = 1.50 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Selected bond lengths (Å)

Yb1—O2 2.469 (4)
Yb1—O3 2.489 (3)
Yb1—O1 2.534 (4)
Yb1—O4 2.555 (4)
Hg1—Se3B 2.544 (3)
Hg1—Se1 2.5683 (7)
Hg1—Se3A 2.635 (3)
Hg1—Se2 2.6747 (6)
Hg1—Se2ii 2.8667 (6)
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART for WNT/2000. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Lanthanide (Ln) ion salts, in which the Ln metal itself is surrounded only by neutral donor ligands and oxidized only by a non-bonded anionic molecule, make up a small portion of less common Ln complexes. It is more likely for the Ln metal to be oxidized by direct coordination of an anionic species (EPh-, X-, Cp-, etc.. where E = S, Se, Te, X = Cl, Br, I) with the metal (Hyeon et al., 2003, Melman et al., 2002). Similar species to the one described herein exist, such as, tris(1,2-dimethoxyethane-O,O')-diiododysprosium(II) (Evans et al., 2000), rac-diiodo-tris(dimethoxyethane)samarium (Hakansson et al., 1999), and tris(1,2-dimethoxyethane)-bis(isothiocyanato)ytterbium(II) (Deacon et al., 2001). These structures differ from the species reported here by their having direct oxidation of the lanthanide metal with anionic coordinating ligands.

In this communication, we report the structure of a unique [Yb(DME)4]2+[Hg2(SePh)6]2- molecular salt (Fig 1.). The 8-coordinate [Yb(DME)4]2+ dication in this study has approximate D-42m (Td) symmetry giving rise to square antiprism geometry similar to U(acac)4. Yb—O bonds of the dication range from 2.465 (4) Å to 2.561 (4) Å and are consistent with the range found for divalent ytterbium(II)—OR2 species, having an associated average of 2.45 Å (Cambridge Structural Database; Allen et al., 1991). Consistent with the general trend, trivalent ytterbium(III)—OR2 bond distances average noticeably shorter at 2.35 Å. Like the dication, the Hg—Se bond geometries of the dianion in this study are consistent with the Hg—Se bonds found in similar oligomeric or polymeric structures (Berardini et al., 1995; Bettenhausen et al., 1998; Freedman et al., 1997; Kim et al., 1991; Magull et al.,1991), which average 2.68 Å. It should be noted that these types of anions are not common and no reports of the dimeric form presented here are found in the Cambridge Structure Database (Nov 2007 version; Allen, 2002). In this Hg dianion, the doubly bridging selenolates bond to the Hg with bond lengths of 2.6746 (5) Å and 2.8664 (6) Å, while the terminal Hg—Se bond lengths are 2.545 (2), 2.5691 (6) and 2.625 (2) Å for Hg1—Se3B, Hg1—Se1 and Hg1—Se3A, respectively. Packing of the cation/anion pair in this sturcture is consistent with other molecular salts in that there are alternating planes of cations and anions repeated along the crystallographic c axis (Fig. 2).

Related literature top

For the synthesis and crystal structures of related compounds see: Berardini et al. (1995); Bettenhausen & Fenske (1998); Deacon et al. (2001); Evans et al. (2000); Freedman et al. (1997); Hyeon & Edelmann (2003); Hakansson et al. (1999); Kim & Kanatzidis (1991); Magull et al. (1991); Melman et al. (2002); Allen (2002); Allen et al. (1991).

Experimental top

All synthesis were carried out under high purity nitrogen (Welco Praxair) using standard Schlenk and glovebox techniques. Solvents (Aldrich) were purified with a dual column Solv-Tek Solvent Purification System. Lanthanide metals were purchased from Strem. The reported structure, [Yb(DME)4]2+[Hg2(SePh)6]2- was synthesized by the reaction of 1 mmol Yb metal with 1.5 mmol PhSeSePh and 40 mg elemental Hg in 30 ml DME. After 14 days, the deep red solution was filtered and concentrated from approximately 20 ml down to 5 ml. The saturated solution was held at -5 C for 7 days to afford yellow crystals of the title compound.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93–0.97 Å and refined as riding with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. The Se3/C21—C26 phenylselenolato anion and the C4 methyl carbon atom are disordered over two positions with equal site-occupancy factors of 0.5 and refined using SIMU, SADI and DELU restraints. To improve refinement stability, restraints (DELU and SIMU) were applied to the displacement parameters of all non-H atoms.

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : ORTEP drawing of the title compound with thermal ellipsoids drawn at 50% probability. Hydrogen atoms are omitted for clarity. Only one component of disorder is shown. Symmetry codes: i = -x, y, 1/2 - z; ii = -x, 1 - y, 1 - z.
[Figure 2] Fig. 2. : Packing diagram of the title compound showing alternating layers of cations and anions stacking along the c direction. Hydrogen atoms are omitted for clarity. Only one component of disorder is shown.
tetrakis(1,2-dimethoxyethane-κ2O,O')ytterbium(II) bis(µ2-phenylselenolato-κ2Se:Se)bis[bis(phenylselenolato- κSe)mercurate(II)] top
Crystal data top
[Yb(C4H10O2)4][Hg2(C6H5Se)6]F(000) = 3520
Mr = 1871.06Dx = 2.128 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7567 reflections
a = 22.688 (3) Åθ = 2.4–30.5°
b = 12.354 (2) ŵ = 10.62 mm1
c = 22.843 (3) ÅT = 100 K
β = 114.218 (3)°Plate, yellow
V = 5839.1 (14) Å30.17 × 0.14 × 0.02 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
5956 independent reflections
Radiation source: fine-focus sealed tube4806 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ and ω scansθmax = 26.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 2828
Tmin = 0.18, Tmax = 0.81k = 1515
26008 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.025P)2 + 0.9P]
where P = (Fo2 + 2Fc2)/3
5956 reflections(Δ/σ)max = 0.001
389 parametersΔρmax = 1.50 e Å3
734 restraintsΔρmin = 0.73 e Å3
280 constraints
Crystal data top
[Yb(C4H10O2)4][Hg2(C6H5Se)6]V = 5839.1 (14) Å3
Mr = 1871.06Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.688 (3) ŵ = 10.62 mm1
b = 12.354 (2) ÅT = 100 K
c = 22.843 (3) Å0.17 × 0.14 × 0.02 mm
β = 114.218 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5956 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
4806 reflections with I > 2σ(I)
Tmin = 0.18, Tmax = 0.81Rint = 0.052
26008 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028734 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.00Δρmax = 1.50 e Å3
5956 reflectionsΔρmin = 0.73 e Å3
389 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Yb10.00000.07701 (2)0.25000.02876 (8)
O10.0836 (2)0.1319 (3)0.20857 (19)0.0506 (10)
O20.0312 (2)0.2322 (3)0.1753 (2)0.0707 (13)
O30.00913 (18)0.0821 (3)0.18739 (19)0.0439 (9)
O40.10668 (19)0.0251 (3)0.15775 (19)0.0533 (10)
C10.1380 (3)0.0671 (6)0.2132 (3)0.0624 (17)
H1A0.15300.02550.25210.094*
H1B0.17220.11350.21360.094*
H1C0.12530.01920.17700.094*
C20.0571 (4)0.1880 (5)0.1486 (3)0.0626 (16)
H2A0.03390.13740.11440.075*
H2B0.09180.21940.13980.075*
C30.0133 (4)0.2736 (6)0.1501 (4)0.0793 (19)
H3A0.03800.33270.17680.095*
H3B0.01070.30130.10710.095*
C4A0.0602 (8)0.3280 (10)0.1864 (9)0.061 (4)0.50
H4A0.08970.30890.20530.092*0.50
H4B0.08330.36460.14640.092*0.50
H4C0.02720.37480.21510.092*0.50
C4B0.0863 (6)0.3006 (13)0.1677 (10)0.075 (4)0.50
H4D0.11450.26220.18230.113*0.50
H4E0.10940.31910.12320.113*0.50
H4F0.07130.36540.19250.113*0.50
C50.0553 (3)0.1652 (5)0.2109 (4)0.070 (2)
H5A0.09240.13890.24690.105*
H5B0.06820.18810.17770.105*
H5C0.03690.22540.22420.105*
C60.0454 (3)0.1146 (5)0.1329 (3)0.0596 (16)
H6A0.06640.17460.14400.072*
H6B0.03190.13920.09990.072*
C70.0926 (3)0.0226 (5)0.1071 (3)0.0565 (15)
H7A0.07450.03200.08870.068*
H7B0.13220.04910.07340.068*
C80.1610 (4)0.0929 (7)0.1291 (4)0.091 (3)
H8A0.16940.12950.16200.137*
H8B0.19790.05000.10350.137*
H8C0.15270.14530.10240.137*
Hg10.072118 (8)0.426875 (14)0.561656 (9)0.02549 (6)
Se10.10648 (3)0.44945 (5)0.68300 (2)0.03980 (14)
Se20.04871 (2)0.35961 (3)0.49222 (2)0.02268 (10)
C90.1760 (2)0.5511 (4)0.7052 (2)0.0340 (11)
C100.2013 (2)0.5948 (4)0.7657 (3)0.0398 (12)
H100.18560.57180.79540.048*
C110.2492 (3)0.6718 (5)0.7837 (3)0.0434 (13)
H110.26540.70020.82500.052*
C120.2731 (2)0.7066 (5)0.7412 (3)0.0505 (14)
H120.30460.76030.75280.061*
C130.2501 (3)0.6611 (6)0.6810 (3)0.0590 (17)
H130.26710.68270.65210.071*
C140.2019 (3)0.5837 (5)0.6629 (3)0.0496 (15)
H140.18680.55360.62200.060*
C150.0921 (2)0.3620 (3)0.5486 (2)0.0213 (9)
C160.1494 (2)0.3053 (4)0.5311 (2)0.0330 (11)
H160.16660.26940.49190.040*
C170.1812 (2)0.3015 (5)0.5714 (3)0.0439 (13)
H170.22040.26520.55830.053*
C180.1556 (2)0.3506 (4)0.6302 (2)0.0342 (11)
H180.17650.34560.65760.041*
C190.0986 (2)0.4075 (4)0.6484 (2)0.0291 (10)
H190.08110.44170.68810.035*
C200.0677 (2)0.4141 (4)0.6079 (2)0.0281 (10)
H200.02980.45400.62030.034*
Se3A0.14624 (15)0.36619 (19)0.50396 (14)0.0311 (4)0.50
C21A0.1583 (3)0.2179 (5)0.5311 (4)0.0246 (18)0.50
C22A0.1111 (4)0.1562 (5)0.5387 (4)0.027 (2)0.50
H22A0.07210.18910.53250.032*0.50
C23A0.1193 (4)0.0471 (5)0.5553 (4)0.0345 (19)0.50
H23A0.08660.00760.56010.041*0.50
C24A0.1772 (4)0.0007 (6)0.5643 (4)0.036 (2)0.50
H24A0.18360.07360.57530.044*0.50
C25A0.2267 (4)0.0574 (6)0.5572 (4)0.036 (2)0.50
H25A0.26560.02420.56340.043*0.50
C26A0.2163 (3)0.1663 (6)0.5406 (4)0.0273 (18)0.50
H26A0.24890.20590.53580.033*0.50
Se3B0.14874 (15)0.3380 (2)0.52023 (15)0.0452 (6)0.50
C21B0.1398 (4)0.1869 (5)0.5340 (4)0.034 (2)0.50
C22B0.0823 (4)0.1404 (6)0.5287 (4)0.039 (2)0.50
H22B0.04650.18490.51960.047*0.50
C23B0.0758 (4)0.0299 (6)0.5365 (4)0.048 (2)0.50
H23B0.03660.00050.53270.057*0.50
C24B0.1294 (5)0.0345 (6)0.5500 (4)0.055 (2)0.50
H24B0.12590.10850.55530.066*0.50
C25B0.1886 (5)0.0073 (7)0.5559 (5)0.050 (2)0.50
H25B0.22420.03750.56500.059*0.50
C26B0.1928 (4)0.1183 (7)0.5477 (4)0.046 (2)0.50
H26B0.23190.14750.55150.055*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb10.05749 (19)0.01481 (14)0.01899 (16)0.0000.02075 (14)0.000
O10.083 (3)0.044 (2)0.039 (2)0.0086 (18)0.040 (2)0.0020 (18)
O20.130 (3)0.037 (2)0.076 (3)0.029 (2)0.073 (3)0.028 (2)
O30.053 (2)0.0304 (18)0.042 (2)0.0060 (15)0.0138 (18)0.0135 (16)
O40.059 (2)0.064 (2)0.032 (2)0.0202 (19)0.0129 (19)0.0095 (19)
C10.069 (4)0.083 (5)0.043 (4)0.006 (3)0.030 (3)0.005 (3)
C20.107 (4)0.056 (4)0.049 (3)0.000 (3)0.057 (3)0.009 (3)
C30.132 (5)0.057 (4)0.074 (4)0.013 (3)0.068 (4)0.030 (3)
C4A0.110 (9)0.033 (6)0.050 (8)0.025 (6)0.041 (7)0.011 (5)
C4B0.108 (8)0.042 (7)0.072 (10)0.033 (6)0.033 (7)0.002 (6)
C50.066 (4)0.051 (4)0.079 (5)0.012 (3)0.016 (3)0.019 (3)
C60.070 (4)0.050 (3)0.047 (4)0.000 (3)0.011 (3)0.014 (3)
C70.073 (4)0.056 (3)0.034 (3)0.004 (3)0.016 (3)0.007 (3)
C80.082 (4)0.125 (6)0.057 (5)0.058 (4)0.020 (4)0.025 (4)
Hg10.02478 (9)0.02907 (10)0.02306 (11)0.00644 (7)0.01028 (8)0.00076 (8)
Se10.0472 (3)0.0482 (3)0.0198 (3)0.0124 (2)0.0094 (2)0.0091 (2)
Se20.0279 (2)0.0224 (2)0.0226 (3)0.00359 (17)0.0153 (2)0.00224 (19)
C90.026 (2)0.047 (3)0.023 (2)0.0002 (19)0.0041 (19)0.006 (2)
C100.040 (3)0.051 (3)0.027 (3)0.004 (2)0.013 (2)0.004 (2)
C110.043 (3)0.056 (3)0.026 (3)0.006 (2)0.009 (2)0.007 (2)
C120.031 (3)0.071 (4)0.040 (3)0.017 (3)0.005 (2)0.000 (3)
C130.045 (3)0.099 (5)0.030 (3)0.031 (3)0.014 (3)0.001 (3)
C140.037 (3)0.084 (4)0.026 (3)0.020 (3)0.010 (2)0.002 (3)
C150.025 (2)0.019 (2)0.025 (2)0.0055 (16)0.0151 (19)0.0036 (18)
C160.025 (2)0.051 (3)0.026 (3)0.002 (2)0.013 (2)0.006 (2)
C170.023 (2)0.076 (4)0.033 (3)0.013 (2)0.013 (2)0.010 (3)
C180.029 (2)0.051 (3)0.029 (3)0.002 (2)0.018 (2)0.002 (2)
C190.041 (2)0.025 (2)0.024 (3)0.0010 (19)0.016 (2)0.0046 (19)
C200.034 (2)0.025 (2)0.030 (3)0.0068 (18)0.017 (2)0.0047 (19)
Se3A0.0342 (7)0.0292 (10)0.0414 (11)0.0113 (7)0.0273 (7)0.0129 (7)
C21A0.028 (4)0.029 (3)0.020 (4)0.003 (3)0.013 (3)0.001 (3)
C22A0.028 (4)0.028 (4)0.024 (4)0.006 (3)0.011 (4)0.004 (4)
C23A0.050 (4)0.029 (4)0.029 (4)0.009 (3)0.022 (4)0.003 (3)
C24A0.054 (4)0.032 (4)0.026 (4)0.016 (3)0.019 (4)0.006 (4)
C25A0.040 (4)0.035 (4)0.029 (4)0.018 (3)0.011 (4)0.000 (4)
C26A0.027 (4)0.034 (4)0.020 (4)0.008 (3)0.010 (3)0.002 (4)
Se3B0.0400 (9)0.0440 (14)0.069 (2)0.0054 (9)0.0405 (13)0.0030 (10)
C21B0.041 (5)0.038 (4)0.020 (4)0.015 (3)0.010 (4)0.003 (4)
C22B0.055 (5)0.039 (4)0.026 (5)0.008 (4)0.019 (5)0.007 (4)
C23B0.068 (5)0.044 (4)0.036 (5)0.011 (4)0.026 (5)0.006 (4)
C24B0.082 (5)0.050 (5)0.036 (5)0.022 (4)0.027 (5)0.007 (4)
C25B0.066 (4)0.048 (4)0.031 (5)0.032 (4)0.017 (4)0.003 (4)
C26B0.052 (4)0.051 (4)0.029 (4)0.017 (3)0.009 (4)0.009 (4)
Geometric parameters (Å, º) top
Yb1—O22.469 (4)Se2—C151.917 (4)
Yb1—O2i2.469 (4)C9—C101.372 (7)
Yb1—O32.489 (3)C9—C141.381 (7)
Yb1—O3i2.489 (3)C10—C111.374 (7)
Yb1—O12.534 (4)C10—H100.9300
Yb1—O1i2.534 (4)C11—C121.360 (8)
Yb1—O4i2.554 (4)C11—H110.9300
Yb1—O42.555 (4)C12—C131.375 (8)
O1—C21.430 (7)C12—H120.9300
O1—C11.439 (7)C13—C141.382 (8)
O2—C4A1.427 (8)C13—H130.9300
O2—C31.445 (7)C14—H140.9300
O2—C4B1.459 (9)C15—C161.383 (6)
O3—C51.407 (7)C15—C201.392 (6)
O3—C61.407 (7)C16—C171.383 (7)
O4—C81.410 (7)C16—H160.9300
O4—C71.447 (7)C17—C181.368 (7)
C1—H1A0.9600C17—H170.9300
C1—H1B0.9600C18—C191.378 (6)
C1—H1C0.9600C18—H180.9300
C2—C31.462 (9)C19—C201.372 (6)
C2—H2A0.9700C19—H190.9300
C2—H2B0.9700C20—H200.9300
C3—H3A0.9700Se3A—C21A1.917 (5)
C3—H3B0.9700C21A—C22A1.384 (6)
C4A—H4A0.9600C21A—C26A1.396 (6)
C4A—H4B0.9600C22A—C23A1.392 (6)
C4A—H4C0.9600C22A—H22A0.9300
C4B—H4D0.9600C23A—C24A1.377 (6)
C4B—H4E0.9600C23A—H23A0.9300
C4B—H4F0.9600C24A—C25A1.396 (7)
C5—H5A0.9600C24A—H24A0.9300
C5—H5B0.9600C25A—C26A1.392 (6)
C5—H5C0.9600C25A—H25A0.9300
C6—C71.506 (8)C26A—H26A0.9300
C6—H6A0.9700Se3B—C21B1.917 (6)
C6—H6B0.9700C21B—C22B1.386 (6)
C7—H7A0.9700C21B—C26B1.396 (6)
C7—H7B0.9700C22B—C23B1.393 (6)
C8—H8A0.9600C22B—H22B0.9300
C8—H8B0.9600C23B—C24B1.379 (6)
C8—H8C0.9600C23B—H23B0.9300
Hg1—Se3B2.544 (3)C24B—C25B1.393 (7)
Hg1—Se12.5683 (7)C24B—H24B0.9300
Hg1—Se3A2.635 (3)C25B—C26B1.392 (7)
Hg1—Se22.6747 (6)C25B—H25B0.9300
Hg1—Se2ii2.8667 (6)C26B—H26B0.9300
Se1—C91.914 (5)
O2—Yb1—O2i78.1 (2)H8A—C8—H8B109.5
O2—Yb1—O3106.50 (14)O4—C8—H8C109.5
O2i—Yb1—O3160.44 (15)H8A—C8—H8C109.5
O2—Yb1—O3i160.44 (15)H8B—C8—H8C109.5
O2i—Yb1—O3i106.50 (14)Se3B—Hg1—Se1119.81 (7)
O3—Yb1—O3i75.68 (18)Se3B—Hg1—Se3A10.79 (6)
O2—Yb1—O165.21 (14)Se1—Hg1—Se3A126.67 (7)
O2i—Yb1—O190.22 (13)Se3B—Hg1—Se2109.62 (8)
O3—Yb1—O175.25 (13)Se1—Hg1—Se2117.211 (17)
O3i—Yb1—O1132.63 (13)Se3A—Hg1—Se2108.91 (8)
O2—Yb1—O1i90.22 (13)Se3B—Hg1—Se2ii105.78 (5)
O2i—Yb1—O1i65.21 (14)Se1—Hg1—Se2ii106.512 (17)
O3—Yb1—O1i132.63 (13)Se3A—Hg1—Se2ii95.21 (4)
O3i—Yb1—O1i75.25 (13)Se2—Hg1—Se2ii93.839 (14)
O1—Yb1—O1i148.96 (18)C9—Se1—Hg1102.10 (15)
O2—Yb1—O4i132.16 (15)C15—Se2—Hg1106.31 (13)
O2i—Yb1—O4i73.67 (16)C15—Se2—Hg1ii102.62 (12)
O3—Yb1—O4i90.09 (13)Hg1—Se2—Hg1ii86.163 (14)
O3i—Yb1—O4i66.53 (12)C10—C9—C14117.9 (5)
O1—Yb1—O4i76.96 (13)C10—C9—Se1119.0 (4)
O1i—Yb1—O4i111.10 (13)C14—C9—Se1123.1 (4)
O2—Yb1—O473.66 (16)C9—C10—C11121.7 (5)
O2i—Yb1—O4132.16 (15)C9—C10—H10119.1
O3—Yb1—O466.53 (12)C11—C10—H10119.1
O3i—Yb1—O490.09 (13)C12—C11—C10120.3 (5)
O1—Yb1—O4111.10 (13)C12—C11—H11119.9
O1i—Yb1—O476.96 (13)C10—C11—H11119.9
O4i—Yb1—O4150.91 (18)C11—C12—C13119.0 (5)
C2—O1—C1110.5 (4)C11—C12—H12120.5
C2—O1—Yb1113.8 (4)C13—C12—H12120.5
C1—O1—Yb1125.1 (3)C12—C13—C14120.8 (5)
C4A—O2—C3103.0 (8)C12—C13—H13119.6
C3—O2—C4B116.8 (10)C14—C13—H13119.6
C4A—O2—Yb1122.9 (8)C9—C14—C13120.3 (6)
C3—O2—Yb1120.1 (4)C9—C14—H14119.9
C4B—O2—Yb1121.4 (10)C13—C14—H14119.9
C5—O3—C6112.1 (4)C16—C15—C20117.8 (4)
C5—O3—Yb1125.5 (4)C16—C15—Se2118.6 (3)
C6—O3—Yb1118.9 (3)C20—C15—Se2123.5 (3)
C8—O4—C7108.0 (5)C15—C16—C17120.6 (5)
C8—O4—Yb1125.9 (5)C15—C16—H16119.7
C7—O4—Yb1108.5 (3)C17—C16—H16119.7
O1—C1—H1A109.5C18—C17—C16120.8 (5)
O1—C1—H1B109.5C18—C17—H17119.6
H1A—C1—H1B109.5C16—C17—H17119.6
O1—C1—H1C109.5C17—C18—C19119.3 (4)
H1A—C1—H1C109.5C17—C18—H18120.3
H1B—C1—H1C109.5C19—C18—H18120.3
O1—C2—C3110.5 (5)C20—C19—C18120.2 (5)
O1—C2—H2A109.6C20—C19—H19119.9
C3—C2—H2A109.6C18—C19—H19119.9
O1—C2—H2B109.6C19—C20—C15121.3 (4)
C3—C2—H2B109.6C19—C20—H20119.4
H2A—C2—H2B108.1C15—C20—H20119.4
O2—C3—C2110.3 (5)C21A—Se3A—Hg198.4 (2)
O2—C3—H3A109.6C22A—C21A—C26A117.2 (6)
C2—C3—H3A109.6C22A—C21A—Se3A123.5 (5)
O2—C3—H3B109.6C26A—C21A—Se3A119.2 (5)
C2—C3—H3B109.6C21A—C22A—C23A122.9 (6)
H3A—C3—H3B108.1C21A—C22A—H22A118.5
O2—C4A—H4A109.5C23A—C22A—H22A118.5
O2—C4A—H4B109.5C24A—C23A—C22A118.0 (7)
H4A—C4A—H4B109.5C24A—C23A—H23A121.0
O2—C4A—H4C109.5C22A—C23A—H23A121.0
H4A—C4A—H4C109.5C23A—C24A—C25A121.7 (7)
H4B—C4A—H4C109.5C23A—C24A—H24A119.1
O2—C4B—H4D109.5C25A—C24A—H24A119.1
O2—C4B—H4E109.5C26A—C25A—C24A118.3 (7)
H4D—C4B—H4E109.5C26A—C25A—H25A120.9
O2—C4B—H4F109.5C24A—C25A—H25A120.9
H4D—C4B—H4F109.5C25A—C26A—C21A121.9 (6)
H4E—C4B—H4F109.5C25A—C26A—H26A119.1
O3—C5—H5A109.5C21A—C26A—H26A119.1
O3—C5—H5B109.5C21B—Se3B—Hg1103.0 (3)
H5A—C5—H5B109.5C22B—C21B—C26B117.4 (6)
O3—C5—H5C109.5C22B—C21B—Se3B123.2 (5)
H5A—C5—H5C109.5C26B—C21B—Se3B119.3 (6)
H5B—C5—H5C109.5C21B—C22B—C23B122.7 (7)
O3—C6—C7110.9 (5)C21B—C22B—H22B118.6
O3—C6—H6A109.5C23B—C22B—H22B118.6
C7—C6—H6A109.5C24B—C23B—C22B117.7 (7)
O3—C6—H6B109.5C24B—C23B—H23B121.2
C7—C6—H6B109.5C22B—C23B—H23B121.2
H6A—C6—H6B108.0C23B—C24B—C25B122.3 (7)
O4—C7—C6110.5 (5)C23B—C24B—H24B118.8
O4—C7—H7A109.6C25B—C24B—H24B118.8
C6—C7—H7A109.6C26B—C25B—C24B118.0 (7)
O4—C7—H7B109.6C26B—C25B—H25B121.0
C6—C7—H7B109.6C24B—C25B—H25B121.0
H7A—C7—H7B108.1C25B—C26B—C21B121.9 (7)
O4—C8—H8A109.5C25B—C26B—H26B119.1
O4—C8—H8B109.5C21B—C26B—H26B119.1
O2—Yb1—O1—C224.1 (4)O1—C2—C3—O248.0 (8)
O2i—Yb1—O1—C2100.9 (4)C5—O3—C6—C7177.5 (5)
O3—Yb1—O1—C292.3 (4)Yb1—O3—C6—C722.1 (7)
O3i—Yb1—O1—C2146.2 (4)C8—O4—C7—C6166.9 (6)
O1i—Yb1—O1—C264.7 (4)Yb1—O4—C7—C653.8 (6)
O4i—Yb1—O1—C2174.1 (4)O3—C6—C7—O451.4 (7)
O4—Yb1—O1—C235.2 (4)Se3B—Hg1—Se1—C966.62 (17)
O2—Yb1—O1—C1165.2 (5)Se3A—Hg1—Se1—C956.65 (17)
O2i—Yb1—O1—C1118.0 (5)Se2—Hg1—Se1—C9156.51 (15)
O3—Yb1—O1—C148.7 (4)Se2ii—Hg1—Se1—C953.16 (15)
O3i—Yb1—O1—C15.1 (5)Se3B—Hg1—Se2—C15149.70 (14)
O1i—Yb1—O1—C1154.2 (5)Se1—Hg1—Se2—C158.74 (13)
O4i—Yb1—O1—C144.9 (4)Se3A—Hg1—Se2—C15161.11 (13)
O4—Yb1—O1—C1105.9 (4)Se2ii—Hg1—Se2—C15102.04 (13)
O2i—Yb1—O2—C4A39.6 (8)Se3B—Hg1—Se2—Hg1ii108.26 (5)
O3—Yb1—O2—C4A160.0 (9)Se1—Hg1—Se2—Hg1ii110.779 (18)
O3i—Yb1—O2—C4A66.4 (10)Se3A—Hg1—Se2—Hg1ii96.85 (4)
O1—Yb1—O2—C4A135.4 (9)Se2ii—Hg1—Se2—Hg1ii0.0
O1i—Yb1—O2—C4A25.0 (9)Hg1—Se1—C9—C10171.1 (4)
O4i—Yb1—O2—C4A94.3 (9)Hg1—Se1—C9—C148.3 (5)
O4—Yb1—O2—C4A101.3 (9)C14—C9—C10—C112.4 (8)
O2i—Yb1—O2—C393.7 (5)Se1—C9—C10—C11177.0 (4)
O3—Yb1—O2—C366.7 (5)C9—C10—C11—C120.2 (9)
O3i—Yb1—O2—C3160.3 (5)C10—C11—C12—C132.1 (9)
O1—Yb1—O2—C32.2 (5)C11—C12—C13—C142.1 (10)
O1i—Yb1—O2—C3158.2 (5)C10—C9—C14—C132.4 (9)
O4i—Yb1—O2—C339.0 (5)Se1—C9—C14—C13177.1 (5)
O4—Yb1—O2—C3125.4 (5)C12—C13—C14—C90.1 (10)
O2i—Yb1—O2—C4B71.0 (9)Hg1—Se2—C15—C16163.3 (3)
O3—Yb1—O2—C4B128.6 (9)Hg1ii—Se2—C15—C16107.0 (3)
O3i—Yb1—O2—C4B35.0 (10)Hg1—Se2—C15—C2013.8 (4)
O1—Yb1—O2—C4B166.9 (9)Hg1ii—Se2—C15—C2075.9 (4)
O1i—Yb1—O2—C4B6.5 (9)C20—C15—C16—C170.4 (7)
O4i—Yb1—O2—C4B125.7 (9)Se2—C15—C16—C17177.7 (4)
O4—Yb1—O2—C4B69.9 (9)C15—C16—C17—C182.2 (8)
O2—Yb1—O3—C5143.0 (5)C16—C17—C18—C192.2 (8)
O2i—Yb1—O3—C541.9 (7)C17—C18—C19—C200.5 (8)
O3i—Yb1—O3—C557.2 (4)C18—C19—C20—C151.3 (7)
O1—Yb1—O3—C585.0 (5)C16—C15—C20—C191.3 (7)
O1i—Yb1—O3—C5110.9 (5)Se2—C15—C20—C19175.8 (4)
O4i—Yb1—O3—C58.5 (5)Se3B—Hg1—Se3A—C21A16.5 (7)
O4—Yb1—O3—C5153.6 (5)Se1—Hg1—Se3A—C21A70.0 (3)
O2—Yb1—O3—C659.5 (4)Se2—Hg1—Se3A—C21A79.1 (3)
O2i—Yb1—O3—C6160.6 (5)Se2ii—Hg1—Se3A—C21A175.0 (3)
O3i—Yb1—O3—C6100.4 (4)Hg1—Se3A—C21A—C22A35.3 (5)
O1—Yb1—O3—C6117.4 (4)Hg1—Se3A—C21A—C26A148.2 (4)
O1i—Yb1—O3—C646.7 (5)C26A—C21A—C22A—C23A0.00 (3)
O4i—Yb1—O3—C6166.1 (4)Se3A—C21A—C22A—C23A176.6 (6)
O4—Yb1—O3—C63.9 (4)C21A—C22A—C23A—C24A0.00 (3)
O2—Yb1—O4—C843.4 (5)C22A—C23A—C24A—C25A0.00 (7)
O2i—Yb1—O4—C813.0 (6)C23A—C24A—C25A—C26A0.01 (9)
O3—Yb1—O4—C8160.1 (5)C24A—C25A—C26A—C21A0.01 (9)
O3i—Yb1—O4—C8125.6 (5)C22A—C21A—C26A—C25A0.01 (7)
O1—Yb1—O4—C897.8 (5)Se3A—C21A—C26A—C25A176.8 (6)
O1i—Yb1—O4—C850.8 (5)Se1—Hg1—Se3B—C21B77.9 (3)
O4i—Yb1—O4—C8160.9 (5)Se3A—Hg1—Se3B—C21B150.0 (10)
O2—Yb1—O4—C786.7 (4)Se2—Hg1—Se3B—C21B61.9 (3)
O2i—Yb1—O4—C7143.0 (3)Se2ii—Hg1—Se3B—C21B162.0 (3)
O3—Yb1—O4—C730.1 (3)Hg1—Se3B—C21B—C22B34.0 (5)
O3i—Yb1—O4—C7104.4 (4)Hg1—Se3B—C21B—C26B148.4 (4)
O1—Yb1—O4—C732.2 (4)C26B—C21B—C22B—C23B0.00 (3)
O1i—Yb1—O4—C7179.2 (4)Se3B—C21B—C22B—C23B177.6 (7)
O4i—Yb1—O4—C769.1 (3)C21B—C22B—C23B—C24B0.00 (3)
C1—O1—C2—C3165.6 (6)C22B—C23B—C24B—C25B0.00 (7)
Yb1—O1—C2—C347.6 (7)C23B—C24B—C25B—C26B0.00 (9)
C4A—O2—C3—C2168.1 (9)C24B—C25B—C26B—C21B0.01 (9)
C4B—O2—C3—C2167.7 (10)C22B—C21B—C26B—C25B0.01 (7)
Yb1—O2—C3—C226.9 (8)Se3B—C21B—C26B—C25B177.7 (6)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Yb(C4H10O2)4][Hg2(C6H5Se)6]
Mr1871.06
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)22.688 (3), 12.354 (2), 22.843 (3)
β (°) 114.218 (3)
V3)5839.1 (14)
Z4
Radiation typeMo Kα
µ (mm1)10.62
Crystal size (mm)0.17 × 0.14 × 0.02
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.18, 0.81
No. of measured, independent and
observed [I > 2σ(I)] reflections
26008, 5956, 4806
Rint0.052
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.064, 1.00
No. of reflections5956
No. of parameters389
No. of restraints734
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.50, 0.73

Computer programs: SMART (Bruker, 2005), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Yb1—O22.469 (4)Yb1—O42.555 (4)
Yb1—O2i2.469 (4)Hg1—Se3B2.544 (3)
Yb1—O32.489 (3)Hg1—Se12.5683 (7)
Yb1—O3i2.489 (3)Hg1—Se3A2.635 (3)
Yb1—O12.534 (4)Hg1—Se22.6747 (6)
Yb1—O1i2.534 (4)Hg1—Se2ii2.8667 (6)
Yb1—O4i2.554 (4)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z+1.
 

Acknowledgements

We acknowledge the support of NSF (CHE-0747165), New Jersey State Commission on Science and Technology and USR Optonix for their generous support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Davies, J. E., Galloy, J. J., Johnson, O., Kennard, O., Macrae, C. F., Mitchell, E. M., Mitchell, G. F., Smith, J. M. & &Watson, D. G. (1991). J. Chem. Inf. Comput. Sci. 31, 187–204.  CrossRef CAS Web of Science Google Scholar
First citationBerardini, M., Emge, T. J. & Brennan, J. G. (1995). Inorg. Chem. 34, 53275334.  Google Scholar
First citationBettenhausen, M. & Fenske, D. (1998). Z. Anorg. Allg. Chem. 624, 1245–1246.  CrossRef CAS Google Scholar
First citationBruker (2003). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SMART for WNT/2000. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeacon, G. B., Forsyth, C. M. & Wilkinson, D. L. (2001). Chem. Eur. J. 7, 1784–1795.  CrossRef PubMed CAS Google Scholar
First citationEvans, W. J., Allen, N. T. & Ziller, J. W. (2000). J. Am. Chem. Soc. 122, 11749–11750.  Web of Science CSD CrossRef CAS Google Scholar
First citationFreedman, D., Emge, T. J. & Brennan, J. G. (1997). J. Am. Chem. Soc. 119, 11112–11113.  CSD CrossRef CAS Web of Science Google Scholar
First citationHakansson, M., Vestergren, M., Gustafsson, B. & Hilmersson, G. (1999). Angew. Chem. Int. Ed. Engl. 38, 2199–2201.  CrossRef PubMed CAS Google Scholar
First citationHyeon, J. Y. & Edelmann, F. T. (2003). Coord. Chem. Rev. 247, 21–78.  Web of Science CrossRef CAS Google Scholar
First citationKim, K. W. & Kanatzidis, M. G. (1991). Inorg. Chem. 30, 1966– 1969.  CSD CrossRef CAS Web of Science Google Scholar
First citationMagull, S., Neumuller, B. & Dehnicke, K. (1991). Z. Naturforsch. Teil B, 46, 985–991.  CAS Google Scholar
First citationMelman, J. H., Rohde, C., Emge, T. J. & Brennan, J. G. (2002). Inorg. Chem. 41, 28–33.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m987-m988
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds