organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2-Di­chloro-N-(phenyl­sulfon­yl)­acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 11 July 2008; accepted 13 July 2008; online 19 July 2008)

The conformation of the N—H and C=O bonds in the title compound, C8H7Cl2NO3S, is trans. The benzene ring and the SO2—NH—CO—C group form a dihedral angle of 79.75 (8)°. Mol­ecules are connected via N—H⋯O hydrogen bonds to form linear supra­molecular chains.

Related literature

For related literature, see: Gowda et al. (2006[Gowda, B. T., Paulus, H., Kozisek, J., Tokarcik, M. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 675-682.], 2007[Gowda, B. T., Nayak, R., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2967.], 2008a[Gowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008a). Acta Cryst. E64, o1274.],b[Gowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008b). Acta Cryst. E64, o1410.]); Gowda, Foro, Nirmala et al. (2008[Gowda, B. T., Foro, S., Nirmala, P. G., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1492.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7Cl2NO3S

  • Mr = 268.11

  • Orthorhombic, P b c a

  • a = 9.669 (1) Å

  • b = 10.462 (1) Å

  • c = 21.024 (2) Å

  • V = 2126.7 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 299 (2) K

  • 0.48 × 0.48 × 0.40 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]) Tmin = 0.689, Tmax = 0.728

  • 9241 measured reflections

  • 2156 independent reflections

  • 1729 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.127

  • S = 1.13

  • 2156 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.86 2.00 2.844 (3) 166
Symmetry code: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2004[Oxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the substituent effects on the crystal structures of N-(aryl)-sulfonamides and substituted amides (Gowda et al., 2006, 2007, 2008a,b; Gowda, Foro, Nirmala et al., 2008), the structure of N-(phenylsulfonyl)-2,2-dichloroacetamide (I) has been determined. The conformation of the N—H and C=O bonds is trans (Fig. 1), similar to that observed in N-(phenylsulfonyl)-2,2,2-trimethylacetamide (Gowda et al., 2008b), N-(4-methylphenylsulfonyl)- 2,2-dichloroacetamide (Gowda, Foro, Nirmala et al., 2008) and (4-methylphenylsulfonyl)-2,2,2-trimethylacetamide (Gowda et al., 2008a). Further, the bond parameters in (I) are similar to those in the aforementioned structures and in each of N-(aryl)-2,2-dichloroacetamides (Gowda et al., 2006) and benzenesulfonamide (Gowda et al., 2007). The crystal packing diagram of (I) is dominated by N—H···O hydrogen bonds (Table 1) that lead to supramolecular chains that stack to form layers, as shown in Fig. 2.

Related literature top

For related literature, see: Gowda et al. (2006, 2007, 2008a,b); Gowda, Foro, Nirmala et al. (2008).

Experimental top

Compound (I) was prepared by refluxing benzenesulfonamide (0.10 mole) with an excess of dichloroacetyl chloride (0.20 mole) for about an hour on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid was separated, washed thoroughly with water and dissolved in warm dilute sodium hydrogen carbonate solution. Compound (I) was precipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. Single crystals used for X-ray diffraction studies were obtained from the slow evaporation of an ethanolic solution of (I).

Refinement top

The H atoms were included in the riding model approximation with C—H = 0.93–0.98 Å and N—H = 0.86 Å, and with U(H)iso = 1.2xUeq(C, N).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labeling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. View of the molecular packing in (I) with hydrogen bonding shown as dashed lines.
2,2-Dichloro-N-(phenylsulfonyl)acetamide top
Crystal data top
C8H7Cl2NO3SF(000) = 1088
Mr = 268.11Dx = 1.675 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3214 reflections
a = 9.669 (1) Åθ = 2.8–27.9°
b = 10.462 (1) ŵ = 0.79 mm1
c = 21.024 (2) ÅT = 299 K
V = 2126.7 (4) Å3Prism, colourless
Z = 80.48 × 0.48 × 0.40 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2156 independent reflections
Radiation source: fine-focus sealed tube1729 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 1112
Tmin = 0.689, Tmax = 0.728k = 1213
9241 measured reflectionsl = 2425
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0496P)2 + 3.3191P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.005
2156 reflectionsΔρmax = 0.46 e Å3
137 parametersΔρmin = 0.61 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0159 (14)
Crystal data top
C8H7Cl2NO3SV = 2126.7 (4) Å3
Mr = 268.11Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.669 (1) ŵ = 0.79 mm1
b = 10.462 (1) ÅT = 299 K
c = 21.024 (2) Å0.48 × 0.48 × 0.40 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2156 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
1729 reflections with I > 2σ(I)
Tmin = 0.689, Tmax = 0.728Rint = 0.038
9241 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.13Δρmax = 0.46 e Å3
2156 reflectionsΔρmin = 0.61 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2304 (3)0.7731 (3)0.09583 (13)0.0374 (7)
C20.3659 (4)0.7611 (4)0.07699 (17)0.0546 (9)
H20.42580.70740.09900.066*
C30.4121 (4)0.8294 (4)0.0250 (2)0.0686 (12)
H30.50430.82350.01270.082*
C40.3236 (5)0.9055 (4)0.00819 (18)0.0663 (11)
H40.35420.94680.04470.080*
C50.1901 (5)0.9217 (4)0.0117 (2)0.0742 (13)
H50.13160.97730.01000.089*
C60.1421 (4)0.8553 (4)0.06421 (18)0.0615 (10)
H60.05150.86580.07800.074*
C70.2865 (3)0.8421 (3)0.24530 (13)0.0315 (6)
C80.2599 (3)0.9313 (3)0.30181 (14)0.0383 (7)
H80.18150.98750.29230.046*
N10.1690 (2)0.7905 (2)0.22078 (11)0.0317 (5)
H1N0.09090.81320.23680.038*
O10.0258 (2)0.6569 (2)0.15258 (11)0.0517 (6)
O20.2658 (2)0.5866 (2)0.17518 (11)0.0474 (6)
O30.40112 (19)0.8193 (2)0.22517 (10)0.0425 (5)
Cl10.40794 (9)1.02379 (8)0.31696 (4)0.0542 (3)
Cl20.22066 (11)0.83545 (10)0.36880 (4)0.0626 (3)
S10.16902 (7)0.68542 (7)0.16113 (3)0.0355 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0444 (16)0.0402 (16)0.0275 (13)0.0016 (13)0.0022 (12)0.0021 (12)
C20.0468 (18)0.069 (2)0.0481 (19)0.0057 (18)0.0038 (15)0.0114 (17)
C30.060 (2)0.088 (3)0.059 (2)0.001 (2)0.0103 (19)0.018 (2)
C40.086 (3)0.073 (3)0.0405 (19)0.007 (2)0.0074 (19)0.0124 (18)
C50.092 (3)0.074 (3)0.057 (2)0.024 (3)0.002 (2)0.024 (2)
C60.059 (2)0.077 (3)0.0480 (19)0.025 (2)0.0045 (17)0.0120 (18)
C70.0317 (14)0.0342 (13)0.0285 (13)0.0023 (11)0.0048 (11)0.0012 (11)
C80.0379 (14)0.0392 (16)0.0377 (15)0.0014 (13)0.0053 (12)0.0059 (12)
N10.0231 (10)0.0409 (13)0.0310 (11)0.0013 (9)0.0000 (9)0.0042 (10)
O10.0397 (12)0.0637 (15)0.0517 (13)0.0144 (11)0.0074 (10)0.0088 (11)
O20.0553 (13)0.0384 (12)0.0486 (12)0.0084 (10)0.0025 (11)0.0014 (10)
O30.0247 (10)0.0621 (14)0.0407 (11)0.0015 (9)0.0020 (8)0.0080 (10)
Cl10.0589 (5)0.0460 (5)0.0577 (5)0.0117 (4)0.0141 (4)0.0070 (4)
Cl20.0783 (7)0.0726 (6)0.0369 (4)0.0188 (5)0.0138 (4)0.0085 (4)
S10.0355 (4)0.0372 (4)0.0338 (4)0.0009 (3)0.0024 (3)0.0022 (3)
Geometric parameters (Å, º) top
C1—C21.375 (5)C6—H60.9300
C1—C61.382 (5)C7—O31.210 (3)
C1—S11.755 (3)C7—N11.359 (3)
C2—C31.380 (5)C7—C81.533 (4)
C2—H20.9300C8—Cl11.757 (3)
C3—C41.361 (6)C8—Cl21.770 (3)
C3—H30.9300C8—H80.9800
C4—C51.368 (6)N1—S11.668 (2)
C4—H40.9300N1—H1N0.8600
C5—C61.384 (6)O1—S11.428 (2)
C5—H50.9300O2—S11.425 (2)
C2—C1—C6120.5 (3)O3—C7—N1123.7 (3)
C2—C1—S1120.0 (2)O3—C7—C8123.0 (2)
C6—C1—S1119.5 (3)N1—C7—C8113.3 (2)
C1—C2—C3119.3 (3)C7—C8—Cl1109.8 (2)
C1—C2—H2120.3C7—C8—Cl2107.9 (2)
C3—C2—H2120.3Cl1—C8—Cl2110.02 (16)
C4—C3—C2120.4 (4)C7—C8—H8109.7
C4—C3—H3119.8Cl1—C8—H8109.7
C2—C3—H3119.8Cl2—C8—H8109.7
C3—C4—C5120.6 (4)C7—N1—S1123.15 (19)
C3—C4—H4119.7C7—N1—H1N118.4
C5—C4—H4119.7S1—N1—H1N118.4
C4—C5—C6119.8 (4)O2—S1—O1120.73 (15)
C4—C5—H5120.1O2—S1—N1108.81 (13)
C6—C5—H5120.1O1—S1—N1103.44 (13)
C1—C6—C5119.3 (4)O2—S1—C1108.64 (14)
C1—C6—H6120.4O1—S1—C1109.80 (15)
C5—C6—H6120.4N1—S1—C1104.10 (13)
C6—C1—C2—C31.7 (6)O3—C7—N1—S12.0 (4)
S1—C1—C2—C3179.2 (3)C8—C7—N1—S1177.32 (19)
C1—C2—C3—C41.7 (7)C7—N1—S1—O249.4 (3)
C2—C3—C4—C54.2 (7)C7—N1—S1—O1178.9 (2)
C3—C4—C5—C63.3 (7)C7—N1—S1—C166.3 (3)
C2—C1—C6—C52.5 (6)C2—C1—S1—O215.1 (3)
S1—C1—C6—C5178.3 (3)C6—C1—S1—O2165.7 (3)
C4—C5—C6—C10.0 (7)C2—C1—S1—O1149.1 (3)
O3—C7—C8—Cl115.7 (4)C6—C1—S1—O131.7 (3)
N1—C7—C8—Cl1164.9 (2)C2—C1—S1—N1100.7 (3)
O3—C7—C8—Cl2104.2 (3)C6—C1—S1—N178.5 (3)
N1—C7—C8—Cl275.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.862.002.844 (3)166
Symmetry code: (i) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H7Cl2NO3S
Mr268.11
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)299
a, b, c (Å)9.669 (1), 10.462 (1), 21.024 (2)
V3)2126.7 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.48 × 0.48 × 0.40
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.689, 0.728
No. of measured, independent and
observed [I > 2σ(I)] reflections
9241, 2156, 1729
Rint0.038
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.127, 1.13
No. of reflections2156
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.61

Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.862.002.844 (3)166
Symmetry code: (i) x1/2, y, z+1/2.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationGowda, B. T., Foro, S., Nirmala, P. G., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1492.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008a). Acta Cryst. E64, o1274.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008b). Acta Cryst. E64, o1410.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Nayak, R., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2967.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Paulus, H., Kozisek, J., Tokarcik, M. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 675–682.  CAS Google Scholar
First citationOxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds