organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Meth­oxy­phen­yl)-1H-indene

aChemical Engineering and Pharmaceutical College, Henan University of Science and Technology, Luoyang 471003, People's Republic of China
*Correspondence e-mail: liudeng20022002@yahoo.com.cn

(Received 27 April 2008; accepted 28 June 2008; online 5 July 2008)

Excluding four H atoms, the molecule of the title compound, C16H14O, is almost planar, with an r.m.s. deviation of 0.0801 (2) Å. Due to pπ conjugation, the lengths of the two single bonds attached to the O atom are significantly different.

Related literature

For related literature, see: Rayabarapu et al. (2003[Rayabarapu, D. K., Yang, C. H. & Cheng, C. H. (2003). J. Org. Chem. 68, 6726-6731.]); Senanayake et al. (1995[Senanayake, C. H., Roberts, F. E., DiMichele, L. M., Ryan, K. M., Liu, J., Fredenburgh, L. E., Foster, B. S., Douglas, A. W., Larsen, R. D., Verhoeven, T. R. & Reider, P. J. (1995). Tetrahedron Lett. 36, 3993-3996.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14O

  • Mr = 222.27

  • Monoclinic, P 21 /c

  • a = 5.8347 (8) Å

  • b = 7.5584 (10) Å

  • c = 26.135 (4) Å

  • β = 92.772 (11)°

  • V = 1151.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 113 (2) K

  • 0.34 × 0.32 × 0.12 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Molecular Structure Corporation & Rigaku, 1999[Molecular Structure Corporation & Rigaku (1999). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.974, Tmax = 0.991

  • 10940 measured reflections

  • 2724 independent reflections

  • 2360 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.135

  • S = 1.10

  • 2724 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected geometric parameters (Å, °)

O1—C1 1.3724 (16)
O1—C16 1.4301 (19)

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 1999[Molecular Structure Corporation & Rigaku (1999). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Indene ring frameworks are present in a large number of biologically active compounds, and their metallocene complexes are able to catalyze olefin polymerization (Senanayake et al., 1995; Rayabarapu et al., 2003). Some derivatives have shown analgesic and myorelaxation activity, and others are used as valuable intermediates for the synthesis of indenyl chrysanthemates that possess insecticidal properties. So in the recent three decades, many chemists have been attracted by the synthesis of indenes. In this context, we report the synthesis and crystal structure of the title compound, (I), namely 2-(4-methoxyphenyl)-1H-indene.

The title compound was obtained as colourless plate-like crystals in the monoclinic space group P 1 21/c 1. A view of the molecular structure of (I) with the numbering scheme is shown in Fig. 1. The whole molecular structure is almost planar with an r.m.s. deviation of 0.0801 (2) Å. Due to the pπ conjugation of atom O1 and benzene ring, the single-bond distance of the O1—C1 [1.3724 (16) Å] is significantly shorter than that of O1—C16 [1.4301 (19) Å].

Related literature top

For related literature, see: Rayabarapu et al. (2003); Senanayake et al. (1995).

Experimental top

o-Bromobenzyl zinc bromide (3.5 mmol, 3.5 equiv) in 3.5 ml CH2Cl2 was added to a degassed refluxing CH2Cl2 solution (8 ml) of 1-ethynyl-4-methoxybenzene (1.0 mmol, 1.0 equiv) and Ni(PPh3)2I2 (0.1 mmol, 0.1 equiv). After being stirred at 313 K for 6 h, the solution was cooled to room temperature. The resultant solution was diluted with 50 ml ethyl acetate. The organic layer was washed with 10 ml aqueous HCl solution, saturated NaCl. The aqueous layer was back-extracted with Ethyl acetate. The combined organic layer was dried over anhydrous Na2SO4. After filtration, the solvent was removed under reduced pressure and the residue was purified via flash chromatography (SiO2) to afford the compound. Single crystal suitale for X-ray analysis were obtained by slow evaporation at 298 K of a CH2Cl2 solution.

Refinement top

H atoms were positioned geometrically and refined as riding with C—H = 0.95–0.99 Å. For the CH and CH2 groups, Uiso(H) values are set equal to 1.2Ueq (carrier atom) and for the methyl groups they are set equal to 1.5Ueq (carrier atom).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 1999); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 1999); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level.
2-(4-Methoxyphenyl)-1H-indene top
Crystal data top
C16H14OF(000) = 472
Mr = 222.27Dx = 1.282 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 2782 reflections
a = 5.8347 (8) Åθ = 2.8–27.9°
b = 7.5584 (10) ŵ = 0.08 mm1
c = 26.135 (4) ÅT = 113 K
β = 92.772 (11)°Plate, colourless
V = 1151.3 (3) Å30.34 × 0.32 × 0.12 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
2724 independent reflections
Radiation source: rotating anode2360 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.038
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 2.8°
ω scansh = 77
Absorption correction: multi-scan
(CrystalClear; Molecular Structure Corporation & Rigaku, 1999)
k = 99
Tmin = 0.974, Tmax = 0.991l = 3434
10940 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0654P)2 + 0.4321P]
where P = (Fo2 + 2Fc2)/3
2724 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C16H14OV = 1151.3 (3) Å3
Mr = 222.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.8347 (8) ŵ = 0.08 mm1
b = 7.5584 (10) ÅT = 113 K
c = 26.135 (4) Å0.34 × 0.32 × 0.12 mm
β = 92.772 (11)°
Data collection top
Rigaku Saturn
diffractometer
2724 independent reflections
Absorption correction: multi-scan
(CrystalClear; Molecular Structure Corporation & Rigaku, 1999)
2360 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.991Rint = 0.038
10940 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.10Δρmax = 0.32 e Å3
2724 reflectionsΔρmin = 0.39 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.06468 (18)0.38400 (14)0.43568 (4)0.0246 (3)
C10.0999 (2)0.37824 (18)0.38417 (5)0.0196 (3)
C20.0458 (2)0.29441 (18)0.34780 (5)0.0209 (3)
H20.18240.23840.35780.025*
C30.0118 (2)0.29399 (18)0.29665 (5)0.0205 (3)
H30.08750.23660.27200.025*
C40.2110 (2)0.37525 (17)0.28040 (5)0.0188 (3)
C50.3523 (2)0.46050 (18)0.31800 (5)0.0207 (3)
H50.48840.51770.30820.025*
C60.2972 (2)0.46277 (18)0.36889 (5)0.0217 (3)
H60.39440.52230.39350.026*
C70.2705 (2)0.37168 (17)0.22661 (5)0.0191 (3)
C80.4701 (2)0.44705 (18)0.20655 (5)0.0203 (3)
H80.58850.50820.22550.024*
C90.4594 (2)0.41280 (18)0.15079 (5)0.0193 (3)
C100.6102 (3)0.45594 (19)0.11311 (5)0.0234 (3)
H100.74680.52030.12150.028*
C110.5577 (3)0.40313 (19)0.06279 (6)0.0251 (3)
H110.66020.43090.03680.030*
C120.3566 (3)0.31006 (19)0.05014 (5)0.0246 (3)
H120.32390.27470.01570.030*
C130.2030 (3)0.26833 (18)0.08766 (5)0.0220 (3)
H130.06480.20640.07900.026*
C140.2559 (2)0.31909 (17)0.13805 (5)0.0188 (3)
C150.1310 (2)0.29032 (18)0.18543 (5)0.0197 (3)
H15A0.02260.34610.18240.024*
H15B0.11180.16230.19190.024*
C160.1393 (3)0.3029 (2)0.45282 (6)0.0311 (4)
H16A0.14950.32270.48970.047*
H16B0.13470.17550.44600.047*
H16C0.27360.35480.43450.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0271 (6)0.0282 (6)0.0184 (5)0.0015 (4)0.0008 (4)0.0018 (4)
C10.0221 (7)0.0180 (6)0.0187 (6)0.0040 (5)0.0003 (5)0.0017 (5)
C20.0195 (7)0.0196 (7)0.0237 (7)0.0020 (5)0.0006 (5)0.0014 (5)
C30.0205 (7)0.0188 (6)0.0219 (7)0.0012 (5)0.0019 (5)0.0009 (5)
C40.0197 (7)0.0141 (6)0.0224 (7)0.0037 (5)0.0004 (5)0.0003 (5)
C50.0179 (7)0.0195 (7)0.0247 (7)0.0006 (5)0.0011 (5)0.0011 (5)
C60.0205 (7)0.0204 (7)0.0240 (7)0.0004 (5)0.0025 (5)0.0020 (5)
C70.0216 (7)0.0139 (6)0.0220 (7)0.0030 (5)0.0012 (5)0.0006 (5)
C80.0181 (7)0.0212 (7)0.0215 (7)0.0014 (5)0.0001 (5)0.0021 (5)
C90.0193 (7)0.0158 (6)0.0225 (7)0.0011 (5)0.0001 (5)0.0001 (5)
C100.0229 (7)0.0209 (7)0.0267 (7)0.0024 (6)0.0026 (6)0.0015 (5)
C110.0280 (8)0.0241 (7)0.0235 (7)0.0019 (6)0.0060 (6)0.0053 (6)
C120.0311 (8)0.0230 (7)0.0198 (7)0.0021 (6)0.0006 (6)0.0011 (5)
C130.0242 (8)0.0200 (7)0.0216 (7)0.0013 (6)0.0018 (5)0.0005 (5)
C140.0191 (7)0.0157 (6)0.0216 (7)0.0016 (5)0.0002 (5)0.0011 (5)
C150.0192 (7)0.0185 (6)0.0211 (6)0.0008 (5)0.0008 (5)0.0004 (5)
C160.0332 (9)0.0371 (9)0.0234 (7)0.0048 (7)0.0043 (6)0.0049 (6)
Geometric parameters (Å, º) top
O1—C11.3724 (16)C9—C101.391 (2)
O1—C161.4301 (19)C9—C141.409 (2)
C1—C61.392 (2)C10—C111.394 (2)
C1—C21.3963 (19)C10—H100.9500
C2—C31.394 (2)C11—C121.394 (2)
C2—H20.9500C11—H110.9500
C3—C41.399 (2)C12—C131.397 (2)
C3—H30.9500C12—H120.9500
C4—C51.4078 (19)C13—C141.3919 (19)
C4—C71.4645 (19)C13—H130.9500
C5—C61.384 (2)C14—C151.4829 (19)
C5—H50.9500C15—H15A0.9900
C6—H60.9500C15—H15B0.9900
C7—C81.419 (2)C16—H16A0.9800
C7—C151.4542 (19)C16—H16B0.9800
C8—C91.4785 (19)C16—H16C0.9800
C8—H80.9500
C1—O1—C16117.40 (12)C9—C10—C11118.88 (14)
O1—C1—C6115.60 (12)C9—C10—H10120.6
O1—C1—C2124.55 (13)C11—C10—H10120.6
C6—C1—C2119.85 (13)C12—C11—C10120.83 (14)
C3—C2—C1119.13 (13)C12—C11—H11119.6
C3—C2—H2120.4C10—C11—H11119.6
C1—C2—H2120.4C11—C12—C13120.59 (13)
C2—C3—C4122.18 (13)C11—C12—H12119.7
C2—C3—H3118.9C13—C12—H12119.7
C4—C3—H3118.9C14—C13—C12118.78 (14)
C3—C4—C5117.14 (13)C14—C13—H13120.6
C3—C4—C7121.50 (12)C12—C13—H13120.6
C5—C4—C7121.36 (13)C13—C14—C9120.54 (13)
C6—C5—C4121.43 (13)C13—C14—C15130.85 (13)
C6—C5—H5119.3C9—C14—C15108.60 (12)
C4—C5—H5119.3C7—C15—C14106.02 (12)
C5—C6—C1120.26 (13)C7—C15—H15A110.5
C5—C6—H6119.9C14—C15—H15A110.5
C1—C6—H6119.9C7—C15—H15B110.5
C8—C7—C15109.64 (12)C14—C15—H15B110.5
C8—C7—C4125.75 (12)H15A—C15—H15B108.7
C15—C7—C4124.61 (13)O1—C16—H16A109.5
C7—C8—C9107.34 (12)O1—C16—H16B109.5
C7—C8—H8126.3H16A—C16—H16B109.5
C9—C8—H8126.3O1—C16—H16C109.5
C10—C9—C14120.36 (13)H16A—C16—H16C109.5
C10—C9—C8131.24 (13)H16B—C16—H16C109.5
C14—C9—C8108.40 (12)
C16—O1—C1—C6178.34 (12)C7—C8—C9—C10179.34 (14)
C16—O1—C1—C22.0 (2)C7—C8—C9—C140.24 (15)
O1—C1—C2—C3178.41 (13)C14—C9—C10—C110.7 (2)
C6—C1—C2—C31.3 (2)C8—C9—C10—C11178.81 (14)
C1—C2—C3—C40.1 (2)C9—C10—C11—C120.6 (2)
C2—C3—C4—C50.7 (2)C10—C11—C12—C130.3 (2)
C2—C3—C4—C7179.21 (13)C11—C12—C13—C140.9 (2)
C3—C4—C5—C60.4 (2)C12—C13—C14—C90.8 (2)
C7—C4—C5—C6179.47 (13)C12—C13—C14—C15178.47 (14)
C4—C5—C6—C10.7 (2)C10—C9—C14—C130.0 (2)
O1—C1—C6—C5178.17 (12)C8—C9—C14—C13179.60 (12)
C2—C1—C6—C51.5 (2)C10—C9—C14—C15179.45 (12)
C3—C4—C7—C8178.77 (13)C8—C9—C14—C150.18 (15)
C5—C4—C7—C81.1 (2)C8—C7—C15—C140.09 (15)
C3—C4—C7—C151.7 (2)C4—C7—C15—C14179.70 (12)
C5—C4—C7—C15178.42 (13)C13—C14—C15—C7179.39 (14)
C15—C7—C8—C90.20 (15)C9—C14—C15—C70.06 (15)
C4—C7—C8—C9179.80 (12)

Experimental details

Crystal data
Chemical formulaC16H14O
Mr222.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)5.8347 (8), 7.5584 (10), 26.135 (4)
β (°) 92.772 (11)
V3)1151.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.34 × 0.32 × 0.12
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Molecular Structure Corporation & Rigaku, 1999)
Tmin, Tmax0.974, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
10940, 2724, 2360
Rint0.038
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.135, 1.10
No. of reflections2724
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.39

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
O1—C11.3724 (16)O1—C161.4301 (19)
C8—C7—C15109.64 (12)C13—C14—C15130.85 (13)
C8—C7—C4125.75 (12)C9—C14—C15108.60 (12)
 

Acknowledgements

The project was supported by the Fund for Doctorates of Henan University of Science and Technology.

References

First citationMolecular Structure Corporation & Rigaku (1999). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRayabarapu, D. K., Yang, C. H. & Cheng, C. H. (2003). J. Org. Chem. 68, 6726–6731.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSenanayake, C. H., Roberts, F. E., DiMichele, L. M., Ryan, K. M., Liu, J., Fredenburgh, L. E., Foster, B. S., Douglas, A. W., Larsen, R. D., Verhoeven, T. R. & Reider, P. J. (1995). Tetrahedron Lett. 36, 3993–3996.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds