metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2,2′-[(2,2-Di­methyl­propane-1,3-di­yl)­bis­­(nitrilo­methyl­­idyne)]­diphenolato}­dioxidomolybdenum(VI)

aSchool of Chemistry, University College of Science, University of Tehran, Iran, bChemistry Department, Shahid Bahonar University, Kerman, Iran, and cIslamic Azad University, Science and Research Branch, Tehran, Iran
*Correspondence e-mail: aabbasi@khayam.ut.ac.ir

(Received 28 June 2008; accepted 13 July 2008; online 19 July 2008)

In the structure of the title compound, [Mo(C19H20N2O2)O2], the Mo atom exhibits oxidation state +VI and is surrounded by two O atoms and the tetra­dentate Schiff base ligand 2,2′-[(2,2-dimethyl­propane-1,3-di­yl)bis­(nitrilo­methyl­idyne)]diphenolate in a distorted octa­hedral configuration. An intra­molecular C—H⋯O hydrogen bond between a methyl­ene group and one O atom of the O=MoVI=O unit, as well as additional inter­molecular hydrogen bonds between neighboring mol­ecules, lead to a weakly bonded inversion-symmetric dimeric structure.

Related literature

For related structures with O=MoVI=O units and for synthesis, see: Arnaiz et al. (2000[Arnaiz, F. J., Aguado, R., Pedrosa, M. R., De Cian, A. & Fischer, A. (2000). Polyhedron, 19, 2141-2147.]); Holm et al. (1996[Holm, R. H., Kennepohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239-2314.]); Syamal & Maurya (1989[Syamal, A. & Maurya, M. R. (1989). Coord. Chem. Rev. 95, 183-238.]). The crystal structure of the free ligand N,N′-bis­(2-hydroxy­benzyl­idene)-2,2-dimethyl-1,3-propane­diamine was described by Corden et al. (1996[Corden, J. P., Errington, W., Moore, P. & Wallbridge, M. G. H. (1996). Acta Cryst. C52, 125-127.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo(C19H20N2O2)O2]

  • Mr = 436.31

  • Triclinic, [P \overline 1]

  • a = 9.3875 (10) Å

  • b = 9.5597 (10) Å

  • c = 11.0422 (11) Å

  • α = 104.6790 (17)°

  • β = 108.1939 (17)°

  • γ = 101.1218 (17)°

  • V = 869.87 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 100 (2) K

  • 0.18 × 0.12 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: none

  • 8420 measured reflections

  • 3413 independent reflections

  • 3204 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.051

  • S = 1.07

  • 3413 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Selected bond lengths (Å)

Mo1—O1 1.7072 (14)
Mo1—O2 1.7120 (14)
Mo1—O4 1.9373 (13)
Mo1—O3 2.0917 (14)
Mo1—N2 2.1442 (16)
Mo1—N1 2.3402 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O2 0.97 2.49 2.986 (2) 112
C1—H1⋯O1i 0.93 2.54 3.227 (2) 131
C4—H4B⋯O1i 0.97 2.56 3.294 (2) 132
C7—H7⋯O2i 0.93 2.55 3.315 (2) 140
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Numerous chemical reactions are catalyzed by compounds containing complexes with the dioxidomolybdenum(VI) unit OMoVIO (Arnaiz et al. 2000). Moreover, Schiff base compounds containing molybdenum play a significant role in the chemistry of molybdoenzymes (Holm et al. 1996; Syamal & Maurya, 1989). Therefore we are interested in the structural chemistry of dioxidomolybdenum(VI) complexes and have synthesized and structurally characterized the title compound, MoO2(C19H20N2O2), (I).

The molecular structure of (I) and the atom-numbering scheme are shown in Fig. 1. The molybdenum(VI) atom is in a distorted octahedral coordination by two oxygen atoms and one tetradentate ligand L, where L is N,N'-bis(2-hydroxybenzylidene)-2,2-dimethyl-1,3-propanediamine. The Mo–O distances of the oxido ligands are significantly shorter (average 1.71 Å) than the corresponding distances to the O atoms of the tetradentate ligand (average 2.02 Å). The Mo–N distances are the longest (average 2.24 Å). An intramolecular hydrogen bond is present between the methylene group and one O atom from the OMoO group (C4—H41···O2, 2.985 Å). Much weaker intermolecular hydrogen bonds exist between neighboring molecules, leading to an dimer structure (see hydrogen bond Table and Fig. 2). For a packing plot of the structure, see Fig. 3. Resulting from the coordination of the tetradentate L ligand to the molybdenum ion, the chelate ligand is more twisted than the free ligand, with a larger dihedral angle between two phenyl rings of 75.2 (1)° compared to the free ligand with 68.7 (1)° (Corden et al., 1996).

Related literature top

For related structures with OMoVIO units and for synthesis, see: Arnaiz et al. (2000); Holm et al. (1996); Syamal & Maurya (1989). The crystal structure of the free ligand N,N'-bis(2-hydroxybenzylidene)-2,2-dimethyl-1,3-propanediamine was described by Corden et al. (1996).

Experimental top

The title compound was prepared by adding MoO2(acac)2 and the ligand H2L (Corden et al., 1996) in the molar ratio 1:1 to 30 mL dry methanol, followed by refluxing the solution for 1 h. Small prismatic, yellowish crystals precipitated which were filtered off and recrystallized from acetonitrile to get a better crystal quality.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93 Å for H atoms bonded to sp2 C atoms, and C—H = 0.97 Å for H atoms bonded to sp3 C atoms, and constrained to ride on their parent atoms with Uiso(H) = 1.2 and 1.5 Ueq(C), respectively.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as circles of arbitrary radius. Hydrogen bonds are represented as dotted lines.
[Figure 2] Fig. 2. The inversion-symmetric dimeric structure of (I). Hydrogen bonds are represented as dotted lines.
[Figure 3] Fig. 3. Packing plot of (I) along [001].
{2,2'-[(2,2-Dimethylpropane-1,3- diyl)bis(nitrilomethylidyne)]diphenolato}dioxidomolybdenum(VI) top
Crystal data top
[Mo(C19H20N2O2)O2]Z = 2
Mr = 436.31F(000) = 444
Triclinic, P1Dx = 1.666 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3875 (10) ÅCell parameters from 8420 reflections
b = 9.5597 (10) Åθ = 2.5–26.0°
c = 11.0422 (11) ŵ = 0.78 mm1
α = 104.6790 (17)°T = 100 K
β = 108.1939 (17)°Prism, light yellow
γ = 101.1218 (17)°0.18 × 0.12 × 0.06 mm
V = 869.87 (16) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3204 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 26.0°, θmin = 2.1°
ω scansh = 1111
8420 measured reflectionsk = 1111
3413 independent reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0184P)2 + 0.8169P]
where P = (Fo2 + 2Fc2)/3
3413 reflections(Δ/σ)max = 0.001
237 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Mo(C19H20N2O2)O2]γ = 101.1218 (17)°
Mr = 436.31V = 869.87 (16) Å3
Triclinic, P1Z = 2
a = 9.3875 (10) ÅMo Kα radiation
b = 9.5597 (10) ŵ = 0.78 mm1
c = 11.0422 (11) ÅT = 100 K
α = 104.6790 (17)°0.18 × 0.12 × 0.06 mm
β = 108.1939 (17)°
Data collection top
Bruker APEXII CCD
diffractometer
3204 reflections with I > 2σ(I)
8420 measured reflectionsRint = 0.020
3413 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.051H-atom parameters constrained
S = 1.07Δρmax = 0.42 e Å3
3413 reflectionsΔρmin = 0.53 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.742950 (19)0.625366 (18)0.282813 (16)0.01031 (6)
O10.70502 (16)0.74204 (15)0.19043 (14)0.0161 (3)
O20.84039 (16)0.52119 (16)0.20730 (14)0.0167 (3)
O30.59172 (16)0.68583 (15)0.37734 (13)0.0135 (3)
O40.90918 (16)0.76348 (15)0.44982 (13)0.0146 (3)
N10.75678 (18)0.46531 (18)0.41243 (16)0.0115 (3)
N20.52861 (19)0.44879 (18)0.15515 (16)0.0112 (3)
C10.3927 (2)0.4737 (2)0.11735 (19)0.0127 (4)
H10.31110.39810.04430.015*
C20.7108 (2)0.3002 (2)0.34369 (19)0.0122 (4)
H2A0.71900.25120.41150.015*
H2B0.78550.27820.30320.015*
C30.8231 (2)0.5116 (2)0.5423 (2)0.0121 (4)
H30.82290.43820.58380.014*
C40.5301 (2)0.2902 (2)0.11404 (19)0.0131 (4)
H4A0.61770.28360.08630.016*
H4B0.43390.22890.03750.016*
C50.4553 (2)0.7013 (2)0.3131 (2)0.0127 (4)
C60.3575 (2)0.6066 (2)0.1779 (2)0.0132 (4)
C70.2101 (2)0.6264 (2)0.1145 (2)0.0156 (4)
H70.14670.56430.02620.019*
C80.1596 (2)0.7357 (2)0.1811 (2)0.0188 (4)
H80.06310.74860.13800.023*
C90.2546 (3)0.8278 (2)0.3146 (2)0.0189 (4)
H90.22040.90200.36000.023*
C100.3979 (2)0.8102 (2)0.3795 (2)0.0161 (4)
H100.45790.87130.46880.019*
C110.9390 (2)0.7870 (2)0.58181 (19)0.0122 (4)
C120.8984 (2)0.6685 (2)0.62999 (19)0.0120 (4)
C130.9480 (2)0.6997 (2)0.7706 (2)0.0139 (4)
H130.92550.62120.80350.017*
C141.0294 (2)0.8440 (2)0.8609 (2)0.0154 (4)
H141.05950.86330.95360.019*
C151.0658 (2)0.9608 (2)0.8110 (2)0.0156 (4)
H151.12041.05850.87120.019*
C161.0218 (2)0.9330 (2)0.6732 (2)0.0143 (4)
H161.04731.01180.64140.017*
C170.5230 (2)0.0591 (2)0.1785 (2)0.0166 (4)
H17A0.53560.01830.25090.025*
H17B0.59990.04280.14040.025*
H17C0.41970.00950.10980.025*
C180.4199 (2)0.2557 (2)0.2899 (2)0.0156 (4)
H18A0.31850.21630.21740.023*
H18B0.44080.36230.33290.023*
H18C0.42160.20510.35490.023*
C190.5451 (2)0.2294 (2)0.23343 (19)0.0119 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01067 (9)0.01016 (9)0.00976 (9)0.00212 (6)0.00322 (6)0.00433 (6)
O10.0185 (7)0.0120 (7)0.0142 (7)0.0015 (6)0.0028 (6)0.0051 (6)
O20.0143 (7)0.0182 (7)0.0193 (7)0.0037 (6)0.0090 (6)0.0064 (6)
O30.0135 (7)0.0145 (7)0.0121 (7)0.0054 (6)0.0038 (5)0.0046 (5)
O40.0148 (7)0.0147 (7)0.0117 (7)0.0006 (6)0.0026 (6)0.0058 (6)
N10.0081 (8)0.0116 (8)0.0149 (8)0.0030 (6)0.0043 (6)0.0046 (7)
N20.0139 (8)0.0106 (8)0.0093 (8)0.0031 (6)0.0052 (6)0.0032 (6)
C10.0132 (10)0.0134 (9)0.0099 (9)0.0013 (8)0.0031 (7)0.0047 (7)
C20.0116 (9)0.0116 (9)0.0150 (10)0.0042 (8)0.0053 (8)0.0059 (8)
C30.0086 (9)0.0135 (9)0.0167 (10)0.0037 (7)0.0048 (8)0.0090 (8)
C40.0152 (10)0.0106 (9)0.0114 (9)0.0030 (8)0.0045 (8)0.0014 (7)
C50.0145 (10)0.0123 (9)0.0150 (10)0.0036 (8)0.0069 (8)0.0088 (8)
C60.0137 (10)0.0142 (9)0.0148 (10)0.0041 (8)0.0070 (8)0.0082 (8)
C70.0133 (10)0.0184 (10)0.0157 (10)0.0035 (8)0.0047 (8)0.0083 (8)
C80.0161 (10)0.0238 (11)0.0253 (11)0.0111 (9)0.0100 (9)0.0163 (9)
C90.0248 (12)0.0181 (10)0.0244 (11)0.0123 (9)0.0156 (9)0.0121 (9)
C100.0220 (11)0.0143 (10)0.0141 (10)0.0066 (8)0.0084 (8)0.0058 (8)
C110.0075 (9)0.0169 (10)0.0124 (9)0.0052 (8)0.0023 (7)0.0059 (8)
C120.0078 (9)0.0142 (9)0.0148 (10)0.0044 (7)0.0041 (7)0.0056 (8)
C130.0119 (10)0.0173 (10)0.0163 (10)0.0060 (8)0.0068 (8)0.0091 (8)
C140.0140 (10)0.0207 (10)0.0110 (9)0.0054 (8)0.0045 (8)0.0046 (8)
C150.0129 (10)0.0139 (10)0.0160 (10)0.0035 (8)0.0032 (8)0.0019 (8)
C160.0127 (10)0.0131 (10)0.0181 (10)0.0044 (8)0.0043 (8)0.0083 (8)
C170.0173 (10)0.0122 (10)0.0175 (10)0.0026 (8)0.0047 (8)0.0042 (8)
C180.0131 (10)0.0190 (10)0.0168 (10)0.0049 (8)0.0067 (8)0.0083 (8)
C190.0117 (9)0.0098 (9)0.0139 (9)0.0021 (7)0.0054 (8)0.0035 (8)
Geometric parameters (Å, º) top
Mo1—O11.7072 (14)C7—C81.370 (3)
Mo1—O21.7120 (14)C7—H70.9300
Mo1—O41.9373 (13)C8—C91.401 (3)
Mo1—O32.0917 (14)C8—H80.9300
Mo1—N22.1442 (16)C9—C101.378 (3)
Mo1—N12.3402 (16)C9—H90.9300
O3—C51.313 (2)C10—H100.9300
O4—C111.345 (2)C11—C161.395 (3)
N1—C31.286 (2)C11—C121.407 (3)
N1—C21.477 (2)C12—C131.406 (3)
N2—C11.301 (3)C13—C141.379 (3)
N2—C41.472 (2)C13—H130.9300
C1—C61.428 (3)C14—C151.395 (3)
C1—H10.9300C14—H140.9300
C2—C191.534 (3)C15—C161.385 (3)
C2—H2A0.9700C15—H150.9300
C2—H2B0.9700C16—H160.9300
C3—C121.454 (3)C17—C191.534 (3)
C3—H30.9300C17—H17A0.9600
C4—C191.549 (3)C17—H17B0.9600
C4—H4A0.9700C17—H17C0.9600
C4—H4B0.9700C18—C191.525 (3)
C5—C101.410 (3)C18—H18A0.9600
C5—C61.425 (3)C18—H18B0.9600
C6—C71.415 (3)C18—H18C0.9600
O1—Mo1—O2103.33 (7)C8—C7—H7119.5
O1—Mo1—O4101.99 (6)C6—C7—H7119.5
O2—Mo1—O4102.79 (6)C7—C8—C9119.36 (19)
O1—Mo1—O390.82 (6)C7—C8—H8120.3
O2—Mo1—O3161.79 (6)C9—C8—H8120.3
O4—Mo1—O385.05 (6)C10—C9—C8120.94 (19)
O1—Mo1—N293.87 (6)C10—C9—H9119.5
O2—Mo1—N288.54 (6)C8—C9—H9119.5
O4—Mo1—N2157.64 (6)C9—C10—C5121.24 (19)
O3—Mo1—N279.01 (6)C9—C10—H10119.4
O1—Mo1—N1170.94 (6)C5—C10—H10119.4
O2—Mo1—N184.17 (6)O4—C11—C16117.93 (17)
O4—Mo1—N180.95 (6)O4—C11—C12122.15 (17)
O3—Mo1—N180.84 (5)C16—C11—C12119.80 (18)
N2—Mo1—N181.12 (6)C13—C12—C11118.62 (18)
C5—O3—Mo1123.46 (12)C13—C12—C3117.94 (17)
C11—O4—Mo1134.29 (12)C11—C12—C3123.05 (17)
C3—N1—C2115.90 (16)C14—C13—C12121.52 (18)
C3—N1—Mo1124.12 (13)C14—C13—H13119.2
C2—N1—Mo1119.23 (12)C12—C13—H13119.2
C1—N2—C4117.18 (16)C13—C14—C15118.99 (18)
C1—N2—Mo1122.83 (13)C13—C14—H14120.5
C4—N2—Mo1119.87 (12)C15—C14—H14120.5
N2—C1—C6125.94 (18)C16—C15—C14120.85 (19)
N2—C1—H1117.0C16—C15—H15119.6
C6—C1—H1117.0C14—C15—H15119.6
N1—C2—C19115.73 (15)C15—C16—C11120.17 (18)
N1—C2—H2A108.3C15—C16—H16119.9
C19—C2—H2A108.3C11—C16—H16119.9
N1—C2—H2B108.3C19—C17—H17A109.5
C19—C2—H2B108.3C19—C17—H17B109.5
H2A—C2—H2B107.4H17A—C17—H17B109.5
N1—C3—C12125.78 (17)C19—C17—H17C109.5
N1—C3—H3117.1H17A—C17—H17C109.5
C12—C3—H3117.1H17B—C17—H17C109.5
N2—C4—C19110.04 (15)C19—C18—H18A109.5
N2—C4—H4A109.7C19—C18—H18B109.5
C19—C4—H4A109.7H18A—C18—H18B109.5
N2—C4—H4B109.7C19—C18—H18C109.5
C19—C4—H4B109.7H18A—C18—H18C109.5
H4A—C4—H4B108.2H18B—C18—H18C109.5
O3—C5—C10120.15 (18)C18—C19—C2111.61 (16)
O3—C5—C6122.19 (18)C18—C19—C17109.71 (16)
C10—C5—C6117.62 (18)C2—C19—C17106.47 (16)
C7—C6—C5119.77 (18)C18—C19—C4110.70 (16)
C7—C6—C1119.37 (18)C2—C19—C4110.88 (15)
C5—C6—C1119.60 (17)C17—C19—C4107.29 (15)
C8—C7—C6121.04 (19)
O1—Mo1—O3—C541.55 (15)Mo1—O3—C5—C10146.68 (14)
O2—Mo1—O3—C599.9 (2)Mo1—O3—C5—C635.9 (2)
O4—Mo1—O3—C5143.51 (15)O3—C5—C6—C7178.78 (17)
N2—Mo1—O3—C552.23 (14)C10—C5—C6—C71.3 (3)
N1—Mo1—O3—C5134.88 (15)O3—C5—C6—C111.6 (3)
O1—Mo1—O4—C11135.68 (17)C10—C5—C6—C1165.83 (18)
O2—Mo1—O4—C11117.46 (17)N2—C1—C6—C7171.47 (18)
O3—Mo1—O4—C1145.89 (17)N2—C1—C6—C521.3 (3)
N2—Mo1—O4—C111.4 (3)C5—C6—C7—C80.1 (3)
N1—Mo1—O4—C1135.61 (17)C1—C6—C7—C8167.25 (19)
O2—Mo1—N1—C3121.32 (16)C6—C7—C8—C90.8 (3)
O4—Mo1—N1—C317.34 (15)C7—C8—C9—C100.1 (3)
O3—Mo1—N1—C369.06 (15)C8—C9—C10—C51.3 (3)
N2—Mo1—N1—C3149.25 (16)O3—C5—C10—C9179.54 (18)
O2—Mo1—N1—C248.30 (13)C6—C5—C10—C92.0 (3)
O4—Mo1—N1—C2152.29 (13)Mo1—O4—C11—C16150.25 (15)
O3—Mo1—N1—C2121.32 (13)Mo1—O4—C11—C1233.8 (3)
N2—Mo1—N1—C241.12 (13)O4—C11—C12—C13173.48 (17)
O1—Mo1—N2—C148.07 (15)C16—C11—C12—C132.4 (3)
O2—Mo1—N2—C1151.34 (15)O4—C11—C12—C30.8 (3)
O4—Mo1—N2—C187.3 (2)C16—C11—C12—C3175.13 (18)
O3—Mo1—N2—C142.02 (15)N1—C3—C12—C13172.40 (18)
N1—Mo1—N2—C1124.33 (15)N1—C3—C12—C1114.9 (3)
O1—Mo1—N2—C4136.02 (13)C11—C12—C13—C142.7 (3)
O2—Mo1—N2—C432.75 (14)C3—C12—C13—C14175.75 (18)
O4—Mo1—N2—C488.6 (2)C12—C13—C14—C151.4 (3)
O3—Mo1—N2—C4133.89 (14)C13—C14—C15—C160.2 (3)
N1—Mo1—N2—C451.57 (13)C14—C15—C16—C110.4 (3)
C4—N2—C1—C6159.34 (18)O4—C11—C16—C15175.12 (17)
Mo1—N2—C1—C616.7 (3)C12—C11—C16—C151.0 (3)
C3—N1—C2—C19133.97 (18)N1—C2—C19—C1859.5 (2)
Mo1—N1—C2—C1955.57 (19)N1—C2—C19—C17179.21 (16)
C2—N1—C3—C12170.57 (17)N1—C2—C19—C464.4 (2)
Mo1—N1—C3—C120.6 (3)N2—C4—C19—C1852.6 (2)
C1—N2—C4—C19100.26 (19)N2—C4—C19—C271.82 (19)
Mo1—N2—C4—C1975.87 (17)N2—C4—C19—C17172.30 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O20.972.492.986 (2)112
C1—H1···O1i0.932.543.227 (2)131
C4—H4B···O1i0.972.563.294 (2)132
C7—H7···O2i0.932.553.315 (2)140
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Mo(C19H20N2O2)O2]
Mr436.31
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.3875 (10), 9.5597 (10), 11.0422 (11)
α, β, γ (°)104.6790 (17), 108.1939 (17), 101.1218 (17)
V3)869.87 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.18 × 0.12 × 0.06
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8420, 3413, 3204
Rint0.020
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.051, 1.07
No. of reflections3413
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.53

Computer programs: APEX2 (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001), PLATON (Spek, 2003).

Selected bond lengths (Å) top
Mo1—O11.7072 (14)Mo1—O32.0917 (14)
Mo1—O21.7120 (14)Mo1—N22.1442 (16)
Mo1—O41.9373 (13)Mo1—N12.3402 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O20.972.492.986 (2)111.5
C1—H1···O1i0.932.543.227 (2)131.0
C4—H4B···O1i0.972.563.294 (2)132.4
C7—H7···O2i0.932.553.315 (2)139.9
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

This work was supported by grants from the University of Kerman and the University of Tehran.

References

First citationArnaiz, F. J., Aguado, R., Pedrosa, M. R., De Cian, A. & Fischer, A. (2000). Polyhedron, 19, 2141–2147.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorden, J. P., Errington, W., Moore, P. & Wallbridge, M. G. H. (1996). Acta Cryst. C52, 125–127.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHolm, R. H., Kennepohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239–2314.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSyamal, A. & Maurya, M. R. (1989). Coord. Chem. Rev. 95, 183–238.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds