organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[2-(3,4-Di­chloro­phen­yl)-5-(3,4,5-tri­meth­oxy­phen­yl)-2,3-di­hydro-1,3,4-oxa­diazol-3-yl]ethanone

aSchool of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
*Correspondence e-mail: daohanghe@yahoo.com.cn

(Received 26 June 2008; accepted 4 July 2008; online 9 July 2008)

The title compound, C19H18Cl2N2O5, was synthesized by the reaction of N′-(3,4-dichloro­benzyl­idene)-3,4,5-trimethoxy­benzo­hydrazide and acetic anhydride. The oxadiazole ring makes dihedral angles of 82.82 (7) and 9.92 (7)° with the 3,4-dichloro­benzene and the 3,4,5-trimethoxy­benzene ring planes, respectively. The crystal structure is stabilized by inter­molecular C—H⋯ O and C—H⋯ N hydrogen bonds. Intra­molecular C—H⋯O and C—H⋯N hydrogen bonds are also present.

Related literature

For related literature, see: Abdel et al. (2003[Abdel, K. M., Mohga, M. E. & Nasser, S. A. (2003). Molecules, 8, 744-755.]); Abdel-Rahman & Farghaly (2004[Abdel-Rahman, A. H. & Farghaly, K. (2004). J. Chin. Chem. Soc. 51, 147-156.]); Chai et al. (2002[Chai, B., Cao, S., Liu, H. D., Song, G. H. & Qian, X. H. (2002). Heterocycl. Commun. 8, 601-606.]); Jin et al. (2006[Jin, L., Chen, J., Song, B., Chen, Z., Yang, S., Li, Q., Hu, D. & Xu, R. (2006). Bioorg. Med. Chem. Lett. 16, 5036-5040.]); Mohd et al. (2004[Mohd, A., Khan, M. S. Y. & Zaman, M. S. (2004). Indian J. Chem. Sect. B, 43, 2189-2194.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18Cl2N2O5

  • Mr = 425.25

  • Monoclinic, P 21 /c

  • a = 7.6743 (4) Å

  • b = 15.9516 (8) Å

  • c = 15.7483 (8) Å

  • β = 90.8940 (10)°

  • V = 1927.63 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 173 (2) K

  • 0.47 × 0.39 × 0.32 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.845, Tmax = 0.890

  • 10032 measured reflections

  • 4159 independent reflections

  • 3238 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.125

  • S = 1.04

  • 4159 reflections

  • 257 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O4 0.95 2.43 2.772 (2) 101
C8—H8⋯O2i 1.00 2.56 3.184 (3) 121
C10—H10⋯O1ii 0.95 2.43 3.302 (3) 153
C13—H13⋯O5iii 0.95 2.53 3.426 (3) 156
C16—H16B⋯N1 0.98 2.42 2.839 (3) 105
C18—H18A⋯N1ii 0.98 2.53 3.468 (3) 160
C18—H18C⋯O3 0.98 2.36 2.916 (3) 116
C19—H19A⋯O5iv 0.98 2.58 3.233 (3) 124
Symmetry codes: (i) -x+2, -y, -z+2; (ii) -x+1, -y, -z+2; (iii) -x+2, -y+1, -z+2; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,3,4-Oxadiazole derivatives are well known to possess a diverse range of bioactivities in the pharmaceutical and agrochemical fields; these include insecticidal, antibacterial, anticancer, and anti-inflammatory activities (Abdel et al., 2003; Abdel-Rahman & Farghaly, 2004; Chai et al., 2002; Mohd et al., 2004). Here we report the synthesis and crystal structure of a 1,3,4-oxadiazole derivative containing the 3,4,5-trimethoxyphenyl unit (Fig. 1).

The bond lengths and angles in the title compound are in good agreement with expected values. Though the C8 carbon of the oxadiazole ring is sp3 hybridized, the oxadiazole ring is essentially planar. The oxadiazole ring makes dihedral angles of 82.82 (7)° and 9.92 (7)° with the 3,4-dichlorobenzene and the 3,4,5-trimethoxybenzene ring planes, respectively. These angles are somewhat different from those in a similar crystal structure (Jin et al., 2006). The crystal structure exhibits intermolecular C—H··· O and C—H···N hydrogen bonds which stabilize the molecule. Intramolecular C—H···O and C—H···N hydrogen bonds are also present.

Related literature top

For related literature, see: Abdel et al. (2003); Abdel-Rahman & Farghaly (2004); Chai et al. (2002); Jin et al. (2006); Mohd et al. (2004).

Experimental top

N'-(3,4-Dichlorobenzylidene)-3,4,5-trimethoxybenzohydrazide (0.38 g, 1 mmol) in acetic anhydride (8 ml) was refluxed for 2 h until the starting material disappeared, as evidenced by TLC. The resulting cool mixture was then poured into cold water, after filtration. The residue was recrystallized by slow evaporation of a methanol solution.

Refinement top

All H atoms were included in the refinement at idealized positions and refined as riding, with C—H = 0.95 (aromatic), 0.98 (methyl), 1.00Å (methine) and Uiso(H) = xUeq(carrier atom), where x = 1.5 for methyl, 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are represented by spheres of arbitrary radius.
1-[2-(3,4-Dichlorophenyl)-5-(3,4,5-trimethoxyphenyl)-2,3-dihydro-1,3,4- oxadiazol-3-yl]ethanone top
Crystal data top
C19H18Cl2N2O5F(000) = 880
Mr = 425.25Dx = 1.465 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5138 reflections
a = 7.6743 (4) Åθ = 2.6–27.1°
b = 15.9516 (8) ŵ = 0.37 mm1
c = 15.7483 (8) ÅT = 173 K
β = 90.894 (1)°Block, colorless
V = 1927.63 (17) Å30.47 × 0.39 × 0.32 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
4159 independent reflections
Radiation source: fine-focus sealed tube3238 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 89
Tmin = 0.845, Tmax = 0.891k = 2018
10032 measured reflectionsl = 1320
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0625P)2 + 1.3473P]
where P = (Fo2 + 2Fc2)/3
4159 reflections(Δ/σ)max = 0.001
257 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C19H18Cl2N2O5V = 1927.63 (17) Å3
Mr = 425.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6743 (4) ŵ = 0.37 mm1
b = 15.9516 (8) ÅT = 173 K
c = 15.7483 (8) Å0.47 × 0.39 × 0.32 mm
β = 90.894 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
4159 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3238 reflections with I > 2σ(I)
Tmin = 0.845, Tmax = 0.891Rint = 0.025
10032 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.04Δρmax = 0.34 e Å3
4159 reflectionsΔρmin = 0.31 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.29475 (7)0.36125 (4)0.89108 (4)0.04132 (18)
Cl20.44596 (8)0.54237 (4)0.85758 (4)0.03835 (17)
C10.7817 (3)0.05267 (12)0.99579 (13)0.0233 (4)
C20.7051 (3)0.00409 (13)1.05104 (13)0.0243 (4)
H20.66670.01361.10530.029*
C30.6857 (3)0.08687 (12)1.02552 (13)0.0254 (4)
C40.7416 (3)0.11303 (12)0.94532 (13)0.0250 (4)
C50.8160 (3)0.05492 (13)0.89080 (12)0.0239 (4)
C60.8351 (3)0.02847 (12)0.91572 (13)0.0245 (4)
H60.88420.06830.87820.029*
C70.8153 (3)0.13859 (12)1.02448 (13)0.0229 (4)
C80.9032 (3)0.27301 (12)1.00923 (13)0.0240 (4)
H81.02840.29031.00800.029*
C90.7883 (3)0.33955 (12)0.97007 (12)0.0231 (4)
C100.6145 (3)0.32243 (12)0.95089 (13)0.0248 (4)
H100.56760.26850.96190.030*
C110.5100 (3)0.38450 (13)0.91558 (13)0.0262 (4)
C120.5775 (3)0.46408 (12)0.90009 (13)0.0263 (4)
C130.7498 (3)0.48130 (13)0.91895 (14)0.0297 (5)
H130.79630.53540.90810.036*
C140.8548 (3)0.41901 (13)0.95392 (13)0.0268 (4)
H140.97350.43080.96700.032*
C150.9181 (3)0.29242 (13)1.16484 (14)0.0297 (5)
C160.8863 (4)0.25497 (16)1.25067 (15)0.0428 (6)
H16A0.99300.22771.27170.064*
H16B0.79250.21341.24610.064*
H16C0.85250.29931.29020.064*
C170.5778 (3)0.12792 (16)1.16051 (15)0.0383 (6)
H17A0.68580.11001.18920.058*
H17B0.53120.17741.18930.058*
H17C0.49230.08241.16230.058*
C180.6289 (3)0.22110 (15)0.85465 (16)0.0368 (5)
H18A0.51450.19410.85800.055*
H18B0.61430.28210.85440.055*
H18C0.68610.20360.80240.055*
C190.9654 (3)0.03053 (15)0.76156 (14)0.0351 (5)
H19A0.89120.01690.74500.053*
H19B1.00190.06070.71060.053*
H19C1.06850.00980.79250.053*
N10.7969 (2)0.16636 (10)1.09988 (11)0.0248 (4)
N20.8524 (2)0.25043 (10)1.09633 (10)0.0251 (4)
O10.6131 (2)0.14829 (9)1.07411 (10)0.0345 (4)
O20.7344 (2)0.19688 (9)0.92680 (10)0.0354 (4)
O30.8701 (2)0.08591 (9)0.81492 (9)0.0304 (3)
O40.87792 (19)0.19385 (8)0.96599 (9)0.0265 (3)
O50.9955 (2)0.35859 (10)1.15404 (11)0.0401 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0272 (3)0.0402 (3)0.0563 (4)0.0036 (2)0.0087 (2)0.0089 (3)
Cl20.0433 (3)0.0298 (3)0.0419 (3)0.0081 (2)0.0035 (2)0.0093 (2)
C10.0220 (9)0.0187 (9)0.0290 (10)0.0012 (8)0.0052 (8)0.0011 (8)
C20.0229 (10)0.0251 (10)0.0249 (10)0.0007 (8)0.0009 (8)0.0016 (8)
C30.0252 (10)0.0206 (10)0.0303 (11)0.0032 (8)0.0026 (8)0.0056 (8)
C40.0283 (10)0.0160 (9)0.0307 (11)0.0004 (8)0.0043 (8)0.0000 (8)
C50.0243 (10)0.0225 (10)0.0247 (10)0.0030 (8)0.0026 (8)0.0024 (7)
C60.0255 (10)0.0217 (10)0.0261 (10)0.0000 (8)0.0034 (8)0.0027 (8)
C70.0217 (9)0.0210 (10)0.0260 (10)0.0009 (8)0.0011 (7)0.0024 (7)
C80.0276 (10)0.0172 (9)0.0273 (10)0.0030 (8)0.0015 (8)0.0023 (7)
C90.0280 (10)0.0194 (9)0.0219 (9)0.0003 (8)0.0017 (8)0.0018 (7)
C100.0277 (10)0.0201 (10)0.0266 (10)0.0032 (8)0.0012 (8)0.0004 (8)
C110.0243 (10)0.0283 (11)0.0261 (10)0.0029 (8)0.0004 (8)0.0007 (8)
C120.0328 (11)0.0211 (10)0.0250 (10)0.0042 (8)0.0020 (8)0.0035 (8)
C130.0363 (12)0.0201 (10)0.0328 (11)0.0040 (9)0.0030 (9)0.0025 (8)
C140.0257 (10)0.0216 (10)0.0332 (11)0.0039 (8)0.0016 (8)0.0016 (8)
C150.0363 (12)0.0215 (10)0.0312 (11)0.0032 (9)0.0006 (9)0.0070 (8)
C160.0668 (17)0.0339 (13)0.0277 (12)0.0001 (12)0.0001 (11)0.0065 (10)
C170.0478 (14)0.0373 (13)0.0300 (12)0.0120 (11)0.0034 (10)0.0064 (10)
C180.0350 (12)0.0305 (12)0.0448 (13)0.0101 (10)0.0005 (10)0.0107 (10)
C190.0431 (13)0.0345 (12)0.0279 (11)0.0098 (10)0.0052 (9)0.0017 (9)
N10.0291 (9)0.0177 (8)0.0277 (9)0.0016 (7)0.0018 (7)0.0001 (7)
N20.0309 (9)0.0199 (8)0.0245 (9)0.0015 (7)0.0001 (7)0.0013 (7)
O10.0480 (10)0.0232 (8)0.0325 (8)0.0107 (7)0.0041 (7)0.0023 (6)
O20.0520 (10)0.0185 (7)0.0355 (9)0.0018 (7)0.0072 (7)0.0029 (6)
O30.0388 (9)0.0246 (8)0.0278 (8)0.0043 (6)0.0048 (6)0.0035 (6)
O40.0367 (8)0.0168 (7)0.0262 (7)0.0013 (6)0.0029 (6)0.0010 (5)
O50.0531 (10)0.0255 (8)0.0416 (10)0.0062 (7)0.0027 (8)0.0096 (7)
Geometric parameters (Å, º) top
Cl1—C111.730 (2)C11—C121.394 (3)
Cl2—C121.734 (2)C12—C131.378 (3)
C1—C61.387 (3)C13—C141.388 (3)
C1—C21.392 (3)C13—H130.9500
C1—C71.465 (3)C14—H140.9500
C2—C31.388 (3)C15—O51.224 (3)
C2—H20.9500C15—N21.360 (3)
C3—O11.367 (2)C15—C161.501 (3)
C3—C41.404 (3)C16—H16A0.9800
C4—O21.370 (2)C16—H16B0.9800
C4—C51.392 (3)C16—H16C0.9800
C5—O31.364 (2)C17—O11.429 (3)
C5—C61.394 (3)C17—H17A0.9800
C6—H60.9500C17—H17B0.9800
C7—N11.277 (3)C17—H17C0.9800
C7—O41.368 (2)C18—O21.438 (3)
C8—O41.446 (2)C18—H18A0.9800
C8—N21.476 (3)C18—H18B0.9800
C8—C91.506 (3)C18—H18C0.9800
C8—H81.0000C19—O31.429 (3)
C9—C101.390 (3)C19—H19A0.9800
C9—C141.391 (3)C19—H19B0.9800
C10—C111.385 (3)C19—H19C0.9800
C10—H100.9500N1—N21.409 (2)
C6—C1—C2121.40 (18)C12—C13—H13120.3
C6—C1—C7119.20 (18)C14—C13—H13120.3
C2—C1—C7119.32 (18)C13—C14—C9120.8 (2)
C3—C2—C1118.83 (19)C13—C14—H14119.6
C3—C2—H2120.6C9—C14—H14119.6
C1—C2—H2120.6O5—C15—N2119.3 (2)
O1—C3—C2124.24 (19)O5—C15—C16123.7 (2)
O1—C3—C4115.06 (18)N2—C15—C16117.0 (2)
C2—C3—C4120.70 (18)C15—C16—H16A109.5
O2—C4—C5122.30 (19)C15—C16—H16B109.5
O2—C4—C3118.03 (18)H16A—C16—H16B109.5
C5—C4—C3119.42 (18)C15—C16—H16C109.5
O3—C5—C4115.61 (18)H16A—C16—H16C109.5
O3—C5—C6124.10 (19)H16B—C16—H16C109.5
C4—C5—C6120.27 (19)O1—C17—H17A109.5
C1—C6—C5119.37 (19)O1—C17—H17B109.5
C1—C6—H6120.3H17A—C17—H17B109.5
C5—C6—H6120.3O1—C17—H17C109.5
N1—C7—O4116.60 (17)H17A—C17—H17C109.5
N1—C7—C1126.14 (18)H17B—C17—H17C109.5
O4—C7—C1117.22 (17)O2—C18—H18A109.5
O4—C8—N2100.90 (14)O2—C18—H18B109.5
O4—C8—C9110.42 (16)H18A—C18—H18B109.5
N2—C8—C9113.01 (16)O2—C18—H18C109.5
O4—C8—H8110.7H18A—C18—H18C109.5
N2—C8—H8110.7H18B—C18—H18C109.5
C9—C8—H8110.7O3—C19—H19A109.5
C10—C9—C14119.51 (18)O3—C19—H19B109.5
C10—C9—C8120.30 (18)H19A—C19—H19B109.5
C14—C9—C8120.18 (18)O3—C19—H19C109.5
C11—C10—C9119.63 (19)H19A—C19—H19C109.5
C11—C10—H10120.2H19B—C19—H19C109.5
C9—C10—H10120.2C7—N1—N2104.79 (16)
C10—C11—C12120.43 (19)C15—N2—N1123.09 (17)
C10—C11—Cl1118.75 (16)C15—N2—C8121.12 (17)
C12—C11—Cl1120.82 (16)N1—N2—C8110.70 (15)
C13—C12—C11120.13 (19)C3—O1—C17117.06 (17)
C13—C12—Cl2119.37 (16)C4—O2—C18116.81 (17)
C11—C12—Cl2120.49 (17)C5—O3—C19117.18 (16)
C12—C13—C14119.45 (19)C7—O4—C8106.95 (15)
C6—C1—C2—C31.4 (3)C10—C11—C12—Cl2178.89 (16)
C7—C1—C2—C3175.26 (18)Cl1—C11—C12—Cl21.2 (3)
C1—C2—C3—O1179.76 (19)C11—C12—C13—C140.4 (3)
C1—C2—C3—C40.2 (3)Cl2—C12—C13—C14179.24 (16)
O1—C3—C4—O26.1 (3)C12—C13—C14—C90.0 (3)
C2—C3—C4—O2173.88 (18)C10—C9—C14—C130.0 (3)
O1—C3—C4—C5179.51 (18)C8—C9—C14—C13179.09 (19)
C2—C3—C4—C50.5 (3)O4—C7—N1—N20.3 (2)
O2—C4—C5—O34.6 (3)C1—C7—N1—N2177.36 (18)
C3—C4—C5—O3178.68 (18)O5—C15—N2—N1165.36 (19)
O2—C4—C5—C6174.01 (18)C16—C15—N2—N116.2 (3)
C3—C4—C5—C60.1 (3)O5—C15—N2—C812.9 (3)
C2—C1—C6—C51.8 (3)C16—C15—N2—C8168.66 (19)
C7—C1—C6—C5174.89 (18)C7—N1—N2—C15153.3 (2)
O3—C5—C6—C1177.46 (18)C7—N1—N2—C81.6 (2)
C4—C5—C6—C11.0 (3)O4—C8—N2—C15153.32 (18)
C6—C1—C7—N1169.31 (19)C9—C8—N2—C1588.8 (2)
C2—C1—C7—N17.4 (3)O4—C8—N2—N12.2 (2)
C6—C1—C7—O48.3 (3)C9—C8—N2—N1115.70 (18)
C2—C1—C7—O4174.95 (17)C2—C3—O1—C179.0 (3)
O4—C8—C9—C1045.1 (2)C4—C3—O1—C17171.03 (19)
N2—C8—C9—C1067.1 (2)C5—C4—O2—C1865.1 (3)
O4—C8—C9—C14135.80 (19)C3—C4—O2—C18120.8 (2)
N2—C8—C9—C14112.0 (2)C4—C5—O3—C19172.83 (18)
C14—C9—C10—C110.3 (3)C6—C5—O3—C195.7 (3)
C8—C9—C10—C11179.43 (18)N1—C7—O4—C81.2 (2)
C9—C10—C11—C120.7 (3)C1—C7—O4—C8179.02 (17)
C9—C10—C11—Cl1179.22 (15)N2—C8—O4—C71.92 (19)
C10—C11—C12—C130.7 (3)C9—C8—O4—C7117.85 (17)
Cl1—C11—C12—C13179.17 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O40.952.432.772 (2)101
C8—H8···O2i1.002.563.184 (3)121
C10—H10···O1ii0.952.433.302 (3)153
C13—H13···O5iii0.952.533.426 (3)156
C16—H16B···N10.982.422.839 (3)105
C18—H18A···N1ii0.982.533.468 (3)160
C18—H18C···O30.982.362.916 (3)116
C19—H19A···O5iv0.982.583.233 (3)124
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z+2; (iii) x+2, y+1, z+2; (iv) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC19H18Cl2N2O5
Mr425.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)7.6743 (4), 15.9516 (8), 15.7483 (8)
β (°) 90.894 (1)
V3)1927.63 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.47 × 0.39 × 0.32
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.845, 0.891
No. of measured, independent and
observed [I > 2σ(I)] reflections
10032, 4159, 3238
Rint0.025
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.125, 1.04
No. of reflections4159
No. of parameters257
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.31

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O40.95002.43002.772 (2)101.00
C8—H8···O2i1.00002.56003.184 (3)121.00
C10—H10···O1ii0.95002.43003.302 (3)153.00
C13—H13···O5iii0.95002.53003.426 (3)156.00
C16—H16B···N10.98002.42002.839 (3)105.00
C18—H18A···N1ii0.98002.53003.468 (3)160.00
C18—H18C···O30.98002.36002.916 (3)116.00
C19—H19A···O5iv0.98002.58003.233 (3)124.00
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z+2; (iii) x+2, y+1, z+2; (iv) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank Guangdong Provincial Natural Science Foundation of China (No. 04300531) for financial assistance.

References

First citationAbdel, K. M., Mohga, M. E. & Nasser, S. A. (2003). Molecules, 8, 744–755.  Google Scholar
First citationAbdel-Rahman, A. H. & Farghaly, K. (2004). J. Chin. Chem. Soc. 51, 147–156.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChai, B., Cao, S., Liu, H. D., Song, G. H. & Qian, X. H. (2002). Heterocycl. Commun. 8, 601–606.  CrossRef CAS Google Scholar
First citationJin, L., Chen, J., Song, B., Chen, Z., Yang, S., Li, Q., Hu, D. & Xu, R. (2006). Bioorg. Med. Chem. Lett. 16, 5036–5040.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMohd, A., Khan, M. S. Y. & Zaman, M. S. (2004). Indian J. Chem. Sect. B, 43, 2189–2194.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds