organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Di­methyl 2-(6-benzoyl-7-hydr­­oxy-4-meth­oxy­carbonyl-2-oxo-2H-chromen-8-yl)but-2-enedioate

aDepartment of Chemistry, University of Mazandaran, 47415 Babolsar, Iran
*Correspondence e-mail: baharfar@umz.ac.ir

(Received 2 June 2008; accepted 7 July 2008; online 16 July 2008)

The mol­ecule of the title compound, C24H18O10, a previously unknown coumarin derivative, contains methoxy­carbonyl, 2-butenedioate and benzoyl groups aligned at angles of 28.04 (2), 76.89 (3) and 42.48 (13)°, respectively, to the plane of the coumarin ring system. Intra­molecular O—H⋯O hydrogen bonding between hydr­oxy and carbonyl groups and weak inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure. The two carbon atoms and attached H atom of the ethylene bond are disordered over two positions, with site occupancy factors of ca 0.9 and 0.1.

Related literature

For general background, see: Maeda (1984[Maeda, M. (1984). Laser Dyes: Properties of Organic Compounds for Dye Lasers. New York: Academic Press.]); Parrish et al. (1974[Parrish, J. A., Fitzpatrick, T. B., Tanenbaum, L. & Pathak, M. A. (1974). New Engl. J. Med. 291, 206-209.]); Troste & Toste (1996[Troste, B. M. & Toste, F. D. (1996). J. Am. Chem. Soc. 118, 6305-6306.]); Khalfan et al. (1987[Khalfan, H., Abuknesha, R., Rond-Weaver, M., Price, R. G. & Robinson, R. (1987). Chem. Abstr. 106, 63932.]); Hooper et al. (1982[Hooper, D. C., Wolfson, J. S., McHugh, G. L., Winters, M. B. & Swartz, M. N. (1982). Antimicrob. Agents Chemother. 22, 662-671.]); Morris & Russell (1971[Morris, A. & Russell, A. D. (1971). Prog. Med. Chem. 8, 39-59.]).

[Scheme 1]

Experimental

Crystal data
  • C24H18O10

  • Mr = 466.38

  • Orthorhombic, P 21 21 21

  • a = 9.2661 (17) Å

  • b = 11.508 (2) Å

  • c = 19.661 (4) Å

  • V = 2096.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 120 (2) K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.973, Tmax = 0.979

  • 12547 measured reflections

  • 2864 independent reflections

  • 2194 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.113

  • S = 1.00

  • 2864 reflections

  • 323 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O8 0.99 (6) 1.65 (6) 2.541 (4) 149 (5)
C13—H13C⋯O3i 0.96 2.64 3.467 (5) 145
C15—H15C⋯O2ii 0.96 2.53 3.342 (5) 142
C22—H22A⋯O8iii 0.93 2.49 3.316 (5) 149
C24—H24A⋯O5iv 0.96 2.67 3.392 (5) 133
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Coumarin derivatives are used as laser dyes (Maeda, 1984). Some of them are found in natural products and exhibit antifungal and anticoagulant properties (Parrish et al., 1974; Troste & Toste, 1996). They have been found to possess a wide variety of uses in the perfumery industry, as avour enhancers, sunscreens, laser dyes (Khalfan et al., 1987) and in the pharmaceutical industry (Hooper et al., 1982; Morris & Russell, 1971). We have recently synthesized a series of 7-hydroxy coumarins based on a direct, efficient and operationally convenient approach. This paper reports the synthesis and structure of the title compound, which is one of the products of this reaction.

In the molecular structure (Fig. 1) of the title compound, atoms C10, C11 and H11A are disordered over two sites with occupancy ratio of 0.85:0.15. The inclinations of the planes of the metoxycarbonyl (defined by atoms O9-C23-O10-C24), hydroxy group (defined by atoms C3-O3-H3O), olefin (defined by atoms C12-C11-C10-C14) and benzoyl substituents (defined by atoms C16 to C22) with respect to the coumarin ring system are 28.04 (2), 12.1 (4), 76.89 (3) and 42.48 (13)°, respectively. Torsion angle between hydroxy group and carbonyl of benzoyl group is 0.7 (5)°. Therefore, these two groups are coplanar and form an intramolecular O-H···O hydrogen bonding. Torsion angle between olefin substituent and coumarin moiety is 106.0 (5)°. E-configuration was assigned to the geometry of olefinic bond on the basis of torsion angle of 176.8 (4)° between two methoxy carbonyl groups. Torsion angle between phenyl and carbonyl of benzoyl group is 140.9 (4)°. The crystal structure contains weak intermolecular C—H···O hydrogen bonding (Table 1).

Related literature top

For general background, see: Maeda (1984); Parrish et al. (1974); Troste & Toste (1996); Khalfan et al. (1987); Hooper et al. (1982); Morris & Russell (1971).

Experimental top

To a magnetically stirred solution of 2,4-dihydroxy benzophenone (0.43 g, 2 mmol) and triphenylphosphine (0.52 g, 2 mmol) in 10 ml CH2Cl2 was added dropwise at 263 K over 10 min dimethyl acetylenedicarboxylate (0.45g, 2 mmol). The reaction mixture was then allowed to warm up to room temperature and stand for 48 h. The solvent was removed under reduced pressure and the residue was separated by silica gel column chromatography (Merck 230-400 mesh) using n-hexane–ethyl acetate as eluent. The single crystals of the title compound were obtained form the n-hexane–ethyl acetate solution. Anal. Calcd. for C24H18O10 (466): C, 61.80; H, 3.86 %: Found: C, 61.70; H, 3.77 % .

Refinement top

The ethylene of the dimethyl fumarate moiety is disordered over two sites; occupancies were initially refined and converged to ca 0.867:0.133, and fixed as 0.85:0.15 at final cycles of refinement. The hydroxyl H atom was located in a difference Fourier map and refined isotropically. Other H atoms were placed in calculated positions and refined in riding model with the Uiso(H) = 1.5Ueq(C) (methyl) or 1.2Ueq(C) (others). In absence of significant anomalous scattering effects, Friedel pairs were merged.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids for non-H atoms. Dashed line indicates hydrogen bonding and double dashed lines indicate the minor component of the disordered structure.
(E)-Dimethyl 2-(6-benzoyl-7-hydroxy-4-methoxycarbonyl-2-oxo-2H-chromen-8-yl)but-2-enedioate top
Crystal data top
C24H18O10Dx = 1.478 Mg m3
Mr = 466.38Melting point: 457 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 557 reflections
a = 9.2661 (17) Åθ = 3–28°
b = 11.508 (2) ŵ = 0.12 mm1
c = 19.661 (4) ÅT = 120 K
V = 2096.5 (7) Å3Rhombic, yellow
Z = 40.3 × 0.2 × 0.2 mm
F(000) = 968
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2864 independent reflections
Radiation source: fine-focus sealed tube2194 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 28.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1012
Tmin = 0.973, Tmax = 0.979k = 1513
12547 measured reflectionsl = 1725
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0236P)2 + 2.3937P]
where P = (Fo2 + 2Fc2)/3
2864 reflections(Δ/σ)max = 0.001
323 parametersΔρmax = 0.35 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
C24H18O10V = 2096.5 (7) Å3
Mr = 466.38Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.2661 (17) ŵ = 0.12 mm1
b = 11.508 (2) ÅT = 120 K
c = 19.661 (4) Å0.3 × 0.2 × 0.2 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2864 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
2194 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.979Rint = 0.046
12547 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.35 e Å3
2864 reflectionsΔρmin = 0.25 e Å3
323 parameters
Special details top

Experimental. 1H NMR (500 MHz, CDCl3): δ = 3.66, 3.82 and 3.86 (9 H, 3 s, 3 OCH3), 6.82, 7.27 and 8.85 (3 H, 3 s, 3 CH), 7.54 -7.76 (5 H, m, CH, Aromatic), 12.90 (1 H, s, OH). 13C NMR (125.7 MHz, CDCl3): δ = 52.06, 53.11 and 53.18 (3 OCH3), 108.11 (CH), 112.32, 116.18, 117.22 (3 C), 128.58, 129.50, 132.13 and 132.74 (4 CH), 134.22, 135.26 and 137.06 (3 C), 141.60 (CH), 156.09 and 158.80 (2 C-O), 163.43, 163.87, 164.66 and 165.25 (4 C=O, Ester), 200.7 (C=O, Ketone). IR (KBr) (νmax /cm-1): 3320-3550 (OH), 1735-1750 (C=O, Ketone), 1615-1632 (C=O, Ester), 1400-1435 (C=C). MS, (m/z, %): 466 (9) (M+), 105 (25), 44 (98).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.8901 (3)0.6309 (2)0.47921 (12)0.0296 (5)
O20.9133 (3)0.7985 (2)0.53324 (12)0.0320 (6)
O30.8287 (3)0.2634 (2)0.38265 (14)0.0382 (7)
O41.0075 (3)0.4046 (3)0.55108 (15)0.0515 (8)
O50.8674 (3)0.3474 (2)0.63681 (14)0.0394 (7)
O60.5738 (3)0.4577 (3)0.38390 (15)0.0469 (7)
O70.4741 (3)0.4059 (2)0.48358 (14)0.0395 (7)
O80.9960 (3)0.2006 (2)0.28708 (13)0.0367 (6)
O91.3022 (3)0.6689 (2)0.30924 (13)0.0331 (6)
O101.2205 (3)0.8493 (2)0.33093 (13)0.0314 (6)
C10.9316 (4)0.5539 (3)0.42981 (17)0.0265 (7)
C20.8588 (4)0.4490 (3)0.42914 (19)0.0312 (8)
C30.8983 (4)0.3662 (3)0.38097 (19)0.0294 (8)
C41.0067 (4)0.3908 (3)0.33190 (16)0.0240 (7)
C51.0769 (4)0.4973 (3)0.33484 (16)0.0241 (7)
H5A1.14980.51310.30370.029*
C61.0414 (4)0.5814 (3)0.38323 (16)0.0223 (6)
C71.1059 (4)0.6962 (3)0.38800 (16)0.0244 (7)
C81.0624 (4)0.7706 (3)0.43690 (17)0.0256 (7)
H8A1.10370.84410.43890.031*
C90.9531 (4)0.7394 (3)0.48650 (17)0.0263 (7)
C100.7329 (4)0.4258 (3)0.4747 (2)0.0246 (8)0.85
C110.7438 (4)0.3982 (4)0.5399 (2)0.0285 (9)0.85
H11A0.66020.38650.56510.034*0.85
C10'0.817 (3)0.4049 (19)0.5058 (11)0.022 (4)*0.15
C11'0.677 (3)0.387 (2)0.5078 (13)0.038 (6)*0.15
H11B0.63320.35030.54460.045*0.15
C120.8891 (5)0.3854 (3)0.5746 (2)0.0380 (9)
C130.9957 (4)0.3285 (4)0.67707 (19)0.0407 (10)
H13A0.96930.29530.72010.061*
H13B1.04390.40120.68440.061*
H13C1.05910.27630.65350.061*
C140.5856 (4)0.4312 (3)0.4419 (2)0.0363 (9)
C150.3335 (4)0.4193 (4)0.4522 (2)0.0417 (10)
H15A0.26050.39070.48250.063*
H15B0.33060.37610.41050.063*
H15C0.31640.50000.44290.063*
C161.0426 (4)0.3018 (3)0.28092 (18)0.0273 (7)
C171.1342 (4)0.3286 (3)0.22093 (17)0.0259 (7)
C181.2264 (4)0.2416 (3)0.19724 (18)0.0297 (8)
H18A1.23010.17030.21940.036*
C191.3132 (4)0.2616 (3)0.14031 (19)0.0345 (9)
H19A1.37680.20480.12510.041*
C201.3031 (4)0.3672 (4)0.1070 (2)0.0372 (9)
H20A1.36130.38130.06940.045*
C211.2084 (4)0.4517 (3)0.12855 (19)0.0339 (8)
H21A1.20130.52140.10480.041*
C221.1240 (4)0.4333 (3)0.18531 (18)0.0291 (7)
H22A1.06030.49060.19990.035*
C231.2213 (4)0.7331 (3)0.33863 (17)0.0266 (7)
C241.3248 (4)0.8940 (3)0.2829 (2)0.0361 (9)
H24A1.31330.97660.27880.054*
H24B1.30980.85820.23930.054*
H24C1.42050.87690.29860.054*
H3O0.884 (6)0.213 (5)0.352 (3)0.078 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0358 (13)0.0261 (12)0.0269 (12)0.0040 (11)0.0063 (11)0.0025 (10)
O20.0351 (14)0.0322 (13)0.0289 (13)0.0018 (11)0.0021 (11)0.0061 (11)
O30.0440 (16)0.0275 (14)0.0432 (16)0.0110 (12)0.0143 (13)0.0061 (12)
O40.0523 (19)0.065 (2)0.0368 (16)0.0114 (17)0.0002 (15)0.0119 (15)
O50.0301 (14)0.0448 (16)0.0433 (16)0.0018 (12)0.0013 (13)0.0071 (13)
O60.0376 (16)0.0583 (19)0.0447 (17)0.0016 (14)0.0041 (14)0.0037 (15)
O70.0371 (15)0.0433 (15)0.0380 (15)0.0026 (13)0.0069 (13)0.0006 (13)
O80.0442 (16)0.0248 (13)0.0410 (15)0.0064 (12)0.0104 (13)0.0035 (12)
O90.0299 (13)0.0286 (13)0.0408 (14)0.0029 (11)0.0088 (12)0.0057 (12)
O100.0309 (13)0.0264 (13)0.0369 (14)0.0033 (11)0.0065 (11)0.0015 (11)
C10.0321 (18)0.0248 (16)0.0224 (16)0.0022 (14)0.0005 (15)0.0005 (14)
C20.038 (2)0.0260 (17)0.0302 (18)0.0046 (15)0.0069 (16)0.0010 (15)
C30.0318 (18)0.0239 (17)0.0327 (18)0.0042 (14)0.0020 (16)0.0000 (15)
C40.0245 (16)0.0249 (16)0.0226 (16)0.0005 (13)0.0012 (14)0.0015 (14)
C50.0246 (16)0.0242 (16)0.0236 (16)0.0009 (13)0.0001 (14)0.0010 (14)
C60.0236 (15)0.0218 (15)0.0214 (15)0.0005 (13)0.0001 (13)0.0000 (13)
C70.0247 (16)0.0251 (16)0.0233 (16)0.0002 (14)0.0024 (14)0.0011 (14)
C80.0266 (17)0.0236 (16)0.0266 (16)0.0006 (13)0.0024 (14)0.0009 (13)
C90.0286 (18)0.0240 (16)0.0263 (17)0.0009 (14)0.0032 (14)0.0028 (15)
C100.0219 (19)0.026 (2)0.026 (2)0.0021 (16)0.0013 (17)0.0009 (17)
C110.025 (2)0.029 (2)0.031 (2)0.0008 (17)0.0036 (19)0.0006 (18)
C120.043 (2)0.0306 (19)0.040 (2)0.0043 (18)0.0105 (19)0.0019 (17)
C130.036 (2)0.056 (3)0.0305 (19)0.0127 (19)0.0005 (17)0.0111 (19)
C140.0253 (18)0.032 (2)0.052 (3)0.0042 (16)0.0086 (18)0.0091 (18)
C150.0271 (19)0.044 (2)0.054 (3)0.0002 (17)0.0013 (18)0.010 (2)
C160.0271 (17)0.0235 (16)0.0312 (18)0.0002 (14)0.0027 (15)0.0012 (15)
C170.0247 (16)0.0266 (17)0.0266 (17)0.0026 (14)0.0010 (14)0.0038 (14)
C180.0290 (18)0.0263 (18)0.0337 (19)0.0003 (14)0.0036 (15)0.0058 (15)
C190.0294 (19)0.036 (2)0.038 (2)0.0023 (16)0.0009 (17)0.0102 (17)
C200.036 (2)0.042 (2)0.033 (2)0.0043 (17)0.0085 (17)0.0090 (17)
C210.041 (2)0.0302 (18)0.0305 (18)0.0032 (16)0.0022 (17)0.0036 (16)
C220.0325 (18)0.0254 (17)0.0294 (17)0.0007 (15)0.0023 (16)0.0040 (15)
C230.0269 (17)0.0260 (17)0.0269 (17)0.0043 (14)0.0032 (15)0.0011 (15)
C240.036 (2)0.0304 (19)0.042 (2)0.0081 (17)0.0083 (17)0.0046 (17)
Geometric parameters (Å, º) top
O1—C11.370 (4)C10—C111.326 (6)
O1—C91.386 (4)C10—C141.511 (5)
O2—C91.201 (4)C11—C121.516 (6)
O3—C31.347 (4)C11—H11A0.9300
O3—H3O0.99 (5)C10'—C11'1.31 (4)
O4—C121.211 (5)C10'—C121.52 (2)
O5—C121.314 (5)C11'—C141.63 (2)
O5—C131.444 (4)C11'—H11B0.9300
O6—C141.185 (5)C13—H13A0.9600
O7—C141.351 (5)C13—H13B0.9600
O7—C151.449 (5)C13—H13C0.9600
O8—C161.248 (4)C15—H15A0.9600
O9—C231.200 (4)C15—H15B0.9600
O10—C231.345 (4)C15—H15C0.9600
O10—C241.446 (4)C16—C171.485 (5)
C1—C21.382 (5)C17—C181.396 (5)
C1—C61.405 (5)C17—C221.397 (5)
C2—C31.393 (5)C18—C191.397 (5)
C2—C101.495 (5)C18—H18A0.9300
C2—C10'1.64 (2)C19—C201.383 (6)
C3—C41.421 (5)C19—H19A0.9300
C4—C51.389 (4)C20—C211.377 (5)
C4—C161.471 (5)C20—H20A0.9300
C5—C61.396 (4)C21—C221.379 (5)
C5—H5A0.9300C21—H21A0.9300
C6—C71.454 (4)C22—H22A0.9300
C7—C81.349 (5)C24—H24A0.9600
C7—C231.505 (5)C24—H24B0.9600
C8—C91.451 (5)C24—H24C0.9600
C8—H8A0.9300
C1—O1—C9122.6 (3)O4—C12—C10'91.8 (9)
C3—O3—H3O104 (3)O5—C12—C10'143.9 (10)
C12—O5—C13115.7 (3)O5—C13—H13A109.5
C14—O7—C15114.0 (3)O5—C13—H13B109.5
C23—O10—C24115.1 (3)H13A—C13—H13B109.5
O1—C1—C2115.8 (3)O5—C13—H13C109.5
O1—C1—C6121.3 (3)H13A—C13—H13C109.5
C2—C1—C6122.9 (3)H13B—C13—H13C109.5
C1—C2—C3118.4 (3)O6—C14—O7124.7 (4)
C1—C2—C10122.1 (3)O6—C14—C10120.3 (4)
C3—C2—C10119.3 (3)O7—C14—C10115.0 (3)
C1—C2—C10'112.2 (8)O6—C14—C11'153.2 (11)
C3—C2—C10'118.4 (8)O7—C14—C11'81.3 (11)
O3—C3—C2117.3 (3)O7—C15—H15A109.5
O3—C3—C4122.0 (3)O7—C15—H15B109.5
C2—C3—C4120.7 (3)H15A—C15—H15B109.5
C5—C4—C3118.6 (3)O7—C15—H15C109.5
C5—C4—C16122.4 (3)H15A—C15—H15C109.5
C3—C4—C16118.9 (3)H15B—C15—H15C109.5
C4—C5—C6121.9 (3)O8—C16—C4120.3 (3)
C4—C5—H5A119.0O8—C16—C17117.9 (3)
C6—C5—H5A119.0C4—C16—C17121.7 (3)
C5—C6—C1117.3 (3)C18—C17—C22119.5 (3)
C5—C6—C7125.2 (3)C18—C17—C16117.8 (3)
C1—C6—C7117.4 (3)C22—C17—C16122.6 (3)
C8—C7—C6120.0 (3)C17—C18—C19120.1 (3)
C8—C7—C23119.6 (3)C17—C18—H18A119.9
C6—C7—C23120.5 (3)C19—C18—H18A119.9
C7—C8—C9122.1 (3)C20—C19—C18119.0 (3)
C7—C8—H8A118.9C20—C19—H19A120.5
C9—C8—H8A118.9C18—C19—H19A120.5
O2—C9—O1117.4 (3)C21—C20—C19121.2 (4)
O2—C9—C8126.0 (3)C21—C20—H20A119.4
O1—C9—C8116.6 (3)C19—C20—H20A119.4
C11—C10—C2124.3 (4)C20—C21—C22120.1 (4)
C11—C10—C14119.5 (4)C20—C21—H21A119.9
C2—C10—C14116.2 (3)C22—C21—H21A119.9
C10—C11—C12121.7 (4)C21—C22—C17120.0 (3)
C10—C11—H11A119.1C21—C22—H22A120.0
C12—C11—H11A119.1C17—C22—H22A120.0
C11'—C10'—C12112 (2)O9—C23—O10124.1 (3)
C11'—C10'—C2108.1 (19)O9—C23—C7125.5 (3)
C12—C10'—C2139.4 (16)O10—C23—C7110.4 (3)
C10'—C11'—C14116 (2)O10—C24—H24A109.5
C10'—C11'—H11B122.0O10—C24—H24B109.5
C14—C11'—H11B122.0H24A—C24—H24B109.5
O4—C12—O5123.7 (4)O10—C24—H24C109.5
O4—C12—C11128.0 (4)H24A—C24—H24C109.5
O5—C12—C11108.4 (4)H24B—C24—H24C109.5
C9—O1—C1—C2179.8 (3)C10—C2—C10'—C12165 (3)
C9—O1—C1—C60.2 (5)C12—C10'—C11'—C14167.5 (15)
O1—C1—C2—C3178.7 (3)C2—C10'—C11'—C1410 (3)
C6—C1—C2—C31.3 (5)C13—O5—C12—O40.4 (6)
O1—C1—C2—C106.0 (5)C13—O5—C12—C11179.1 (3)
C6—C1—C2—C10174.0 (3)C13—O5—C12—C10'167.0 (15)
O1—C1—C2—C10'35.1 (10)C10—C11—C12—O45.3 (7)
C6—C1—C2—C10'144.9 (9)C10—C11—C12—O5174.2 (4)
C1—C2—C3—O3178.1 (3)C10—C11—C12—C10'6.1 (14)
C10—C2—C3—O36.5 (5)C11'—C10'—C12—O4177 (2)
C10'—C2—C3—O336.8 (10)C2—C10'—C12—O47 (2)
C1—C2—C3—C42.6 (5)C11'—C10'—C12—O58 (3)
C10—C2—C3—C4172.9 (3)C2—C10'—C12—O5176.5 (11)
C10'—C2—C3—C4143.9 (10)C11'—C10'—C12—C1111.8 (15)
O3—C3—C4—C5177.9 (3)C2—C10'—C12—C11164 (3)
C2—C3—C4—C52.8 (5)C15—O7—C14—O62.9 (6)
O3—C3—C4—C160.7 (5)C15—O7—C14—C10176.0 (3)
C2—C3—C4—C16178.6 (3)C15—O7—C14—C11'175.6 (11)
C3—C4—C5—C61.8 (5)C11—C10—C14—O6178.6 (4)
C16—C4—C5—C6179.7 (3)C2—C10—C14—O63.2 (6)
C4—C5—C6—C10.5 (5)C11—C10—C14—O70.3 (5)
C4—C5—C6—C7177.6 (3)C2—C10—C14—O7177.8 (3)
O1—C1—C6—C5179.7 (3)C11—C10—C14—C11'15.0 (18)
C2—C1—C6—C50.3 (5)C2—C10—C14—C11'163.2 (18)
O1—C1—C6—C72.0 (5)C10'—C11'—C14—O624 (4)
C2—C1—C6—C7178.0 (3)C10'—C11'—C14—O7170 (2)
C5—C6—C7—C8179.7 (3)C10'—C11'—C14—C103.2 (12)
C1—C6—C7—C81.6 (5)C5—C4—C16—O8167.3 (3)
C5—C6—C7—C230.2 (5)C3—C4—C16—O811.2 (5)
C1—C6—C7—C23178.3 (3)C5—C4—C16—C1712.8 (5)
C6—C7—C8—C90.9 (5)C3—C4—C16—C17168.6 (3)
C23—C7—C8—C9179.1 (3)O8—C16—C17—C1834.7 (5)
C1—O1—C9—O2176.9 (3)C4—C16—C17—C18145.5 (3)
C1—O1—C9—C82.7 (5)O8—C16—C17—C22140.9 (4)
C7—C8—C9—O2176.5 (3)C4—C16—C17—C2238.9 (5)
C7—C8—C9—O13.1 (5)C22—C17—C18—C193.2 (5)
C1—C2—C10—C1178.7 (5)C16—C17—C18—C19179.0 (3)
C3—C2—C10—C11106.0 (5)C17—C18—C19—C201.8 (5)
C10'—C2—C10—C116.5 (13)C18—C19—C20—C210.7 (6)
C1—C2—C10—C14103.2 (4)C19—C20—C21—C221.7 (6)
C3—C2—C10—C1472.0 (5)C20—C21—C22—C170.2 (5)
C10'—C2—C10—C14171.6 (13)C18—C17—C22—C212.2 (5)
C2—C10—C11—C121.3 (6)C16—C17—C22—C21177.8 (3)
C14—C10—C11—C12176.8 (4)C24—O10—C23—O90.9 (5)
C1—C2—C10'—C11'125.0 (18)C24—O10—C23—C7178.3 (3)
C3—C2—C10'—C11'91 (2)C8—C7—C23—O9153.5 (4)
C10—C2—C10'—C11'10.6 (14)C6—C7—C23—O926.5 (5)
C1—C2—C10'—C1251 (2)C8—C7—C23—O1027.4 (4)
C3—C2—C10'—C1293 (2)C6—C7—C23—O10152.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O80.99 (6)1.65 (6)2.541 (4)149 (5)
C13—H13C···O3i0.962.643.467 (5)145
C15—H15C···O2ii0.962.533.342 (5)142
C22—H22A···O8iii0.932.493.316 (5)149
C24—H24A···O5iv0.962.673.392 (5)133
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+3/2, z+1; (iii) x+2, y+1/2, z+1/2; (iv) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC24H18O10
Mr466.38
Crystal system, space groupOrthorhombic, P212121
Temperature (K)120
a, b, c (Å)9.2661 (17), 11.508 (2), 19.661 (4)
V3)2096.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.973, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
12547, 2864, 2194
Rint0.046
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.113, 1.00
No. of reflections2864
No. of parameters323
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.25

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O80.99 (6)1.65 (6)2.541 (4)149 (5)
C13—H13C···O3i0.962.6373.467 (5)145
C15—H15C···O2ii0.962.5303.342 (5)142
C22—H22A···O8iii0.932.4863.316 (5)149
C24—H24A···O5iv0.962.6663.392 (5)133
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+3/2, z+1; (iii) x+2, y+1/2, z+1/2; (iv) x+1/2, y+3/2, z+1.
 

Acknowledgements

We are grateful for the financial support of Mazandaran University of the Islamic Republic of Iran.

References

First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHooper, D. C., Wolfson, J. S., McHugh, G. L., Winters, M. B. & Swartz, M. N. (1982). Antimicrob. Agents Chemother. 22, 662–671.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKhalfan, H., Abuknesha, R., Rond-Weaver, M., Price, R. G. & Robinson, R. (1987). Chem. Abstr. 106, 63932.  Google Scholar
First citationMaeda, M. (1984). Laser Dyes: Properties of Organic Compounds for Dye Lasers. New York: Academic Press.  Google Scholar
First citationMorris, A. & Russell, A. D. (1971). Prog. Med. Chem. 8, 39–59.  CrossRef CAS PubMed Google Scholar
First citationParrish, J. A., Fitzpatrick, T. B., Tanenbaum, L. & Pathak, M. A. (1974). New Engl. J. Med. 291, 206–209.  CrossRef PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTroste, B. M. & Toste, F. D. (1996). J. Am. Chem. Soc. 118, 6305–6306.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds