organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1722-o1723

N,N′-Bis[2-chloro-5-(tri­fluoro­meth­yl)benzyl­­idene]ethane-1,2-di­amine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 30 July 2008; accepted 3 August 2008; online 9 August 2008)

The mol­ecule of the title Schiff base compound, C18H12Cl2F6N2, adopts an E configuration with respect to the azomethine C=N bond. Intra­molecular C—H⋯F (× 2) and C—H⋯Cl (× 2) hydrogen bonds generate S(5) ring motifs. The imino group is coplanar with the aromatic ring. Within the mol­ecule, the planar units are parallel, but extend in opposite directions from the methyl­ene bridge, as indicated by the dihedral angle between the two benzene rings of 3.74 (6)°. The inter­esting features of the crystal structure are weak inter­molecular Cl⋯N and F⋯F inter­actions, with distances of 2.9192 (11) and 3.2714 (10) Å, respectively, which are shorter than the sum of the van der Waals radii of the relevent atoms. These inter­actions link neighbouring mol­ecules into dimers which are stacked down the b axis.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures see, for example: see, for example: Fun, Kargar & Kia (2008[Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.]); Fun, Kia & Kargar (2008[Fun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1335.]); Fun, Mirkhani et al. (2008a[Fun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008a). Acta Cryst. E64, o1374-o1375.],b[Fun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008b). Acta Cryst. E64, o1471.]); Calligaris & Randaccio (1987[Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715-738. London: Pergamon.]). For information on Schiff base complexes and their applications, see, for example: Kia, Mirkhani, Kalman & Deak (2007[Kia, R., Mirkhani, V., Kalman, A. & Deak, A. (2007). Polyhedron, 26, 1117-1716.]); Kia, Mirkhani, Harkema & van Hummel (2007[Kia, R., Mirkhani, V., Harkema, S. & van Hummel, G. J. (2007). Inorg. Chim. Acta, 360, 3369-3375.]); Pal et al. (2005[Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880-3889.]); Hou et al. (2001[Hou, B., Friedman, N., Ruhman, S., Sheves, M. & Ottolenghi, M. (2001). J. Phys. Chem. B, 105, 7042-7048.]); Ren et al. (2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]).

[Scheme 1]

Experimental

Crystal data
  • C18H12Cl2F6N2

  • Mr = 441.20

  • Monoclinic, C 2/c

  • a = 35.7299 (8) Å

  • b = 4.6663 (1) Å

  • c = 27.1134 (6) Å

  • β = 127.851 (2)°

  • V = 3569.44 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 100.0 (1) K

  • 0.59 × 0.27 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.786, Tmax = 0.938

  • 61787 measured reflections

  • 7964 independent reflections

  • 6400 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.111

  • S = 1.10

  • 7964 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯F3 0.93 2.43 2.7415 (14) 100
C7—H7A⋯Cl1 0.93 2.71 3.0811 (12) 105
C10—H10A⋯Cl2 0.93 2.72 3.0925 (13) 105
C16—H16A⋯F5 0.93 2.40 2.7325 (13) 101
Symmetry codes: .

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Schiff bases are one of most prevalent mixed-donor ligands in the field of coordination chemistry. There has been growing interest in Schiff base ligands, mainly because of their wide application in the field of biochemistry, synthesis, and catalysis (Kia et al., 2007a,b; Pal et al., 2005; Hou et al., 2001; Ren et al., 2002). Many Schiff base complexes have been structurally characterized, but only a relatively small number of free Schiff bases have been characterized (Calligaris & Randaccio, 1987). As an extension of our work (Fun, Kargar & Kia 2008; Fun, Kia & Kargar 2008; Fun, Mirkhani et al., 2008a,b) on the structural characterization of Schiff base compounds, the title compound (I), is reported here.

The molecule of the title compound, (I), (Fig. 1), adopts an E configuration with respect to the azomethine CN bond. The bond lengths and angles are within normal ranges (Allen et al., 1987). Intramolecular C—H···F (x 2) and C—H···Cl (x 2) hydrogen bonds generate S(5) ring motifs (Bernstein et al., 1995). The two planar units are parallel but extend in opposite directions from the methylene bridge. The dihedral angle between two benzene rings is 3.74 (6)°. The interesting feature of the crystal structure is weak intermolecular Cl···N and F···F interactions with the distances of 2.9192 (11) and 3.2714 (10) Å, which are shorter than the sum of the van der Waals radii of the relevant atoms, respectively (Table 1). These interactions link neighbouring molecules into dimers which are stacked down the b-axis (Fig. 2).

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structuresm see, for example: see, for example: Fun, Kargar & Kia (2008); Fun, Kia & Kargar (2008); Fun, Mirkhani et al. (2008a,b); Calligaris & Randaccio, (1987). For information on Schiff base complexes and their applications, see, for example: Kia, Mirkhani, Kalman & Deak (2007); Kia, Mirkhani, Harkema & van Hummel (2007); Pal et al. (2005); Hou et al. (2001); Ren et al. (2002).

Experimental top

The synthetic method has been described earlier (Fun, Mirkhani et al., (2008a,b)). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement top

All of the hydrogen atoms were positioned geometrically with C—H = 0.93 and 0.97 Å, and refined in riding model with Uiso (H) = 1.2 Ueq (C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: 'SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels and 50% probability ellipsoids for non-H atoms. Intramolecular interactions are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I), showing stacks of the molecules viewed down the b-axis. Intramolecular and intermolecular interactions are shown as dashed lines.
N,N'-Bis[2-chloro-5-(trifluoromethyl)benzylidene]ethane- 1,2-diamine top
Crystal data top
C18H12Cl2F6N2F(000) = 1776
Mr = 441.20Dx = 1.642 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9825 reflections
a = 35.7299 (8) Åθ = 3.0–34.6°
b = 4.6663 (1) ŵ = 0.43 mm1
c = 27.1134 (6) ÅT = 100 K
β = 127.851 (2)°Block, colourless
V = 3569.44 (17) Å30.59 × 0.27 × 0.15 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7964 independent reflections
Radiation source: fine-focus sealed tube6400 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 35.3°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 5757
Tmin = 0.786, Tmax = 0.938k = 77
61787 measured reflectionsl = 4343
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0531P)2 + 1.9844P]
where P = (Fo2 + 2Fc2)/3
7964 reflections(Δ/σ)max = 0.002
253 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C18H12Cl2F6N2V = 3569.44 (17) Å3
Mr = 441.20Z = 8
Monoclinic, C2/cMo Kα radiation
a = 35.7299 (8) ŵ = 0.43 mm1
b = 4.6663 (1) ÅT = 100 K
c = 27.1134 (6) Å0.59 × 0.27 × 0.15 mm
β = 127.851 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7964 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6400 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 0.938Rint = 0.037
61787 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.10Δρmax = 0.49 e Å3
7964 reflectionsΔρmin = 0.40 e Å3
253 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.551363 (9)0.32741 (7)0.739234 (12)0.02594 (7)
Cl20.189897 (9)1.19679 (7)0.533622 (12)0.02472 (7)
F10.39316 (3)0.30228 (17)0.46809 (3)0.02702 (15)
F20.41420 (3)0.04201 (17)0.43779 (3)0.03119 (17)
F30.45421 (3)0.34947 (19)0.47055 (4)0.03439 (19)
F40.33072 (3)1.47263 (18)0.83440 (3)0.02871 (16)
F50.38418 (2)1.47751 (19)0.82146 (3)0.03130 (18)
F60.34376 (3)1.85581 (16)0.80395 (4)0.03396 (19)
N10.40343 (3)0.5481 (2)0.59973 (4)0.01725 (16)
N20.33501 (3)0.8779 (2)0.64593 (4)0.01823 (16)
C10.51574 (3)0.1868 (2)0.66416 (5)0.01730 (17)
C20.53549 (4)0.0190 (2)0.64928 (5)0.02017 (19)
H2A0.56670.07770.67910.024*
C30.50850 (4)0.1361 (2)0.58984 (5)0.01883 (18)
H3A0.52140.27330.57930.023*
C40.46179 (3)0.0459 (2)0.54599 (5)0.01615 (17)
C50.44222 (3)0.1577 (2)0.56131 (5)0.01572 (17)
H5A0.41090.21400.53150.019*
C60.46882 (3)0.2794 (2)0.62082 (5)0.01529 (16)
C70.44777 (3)0.5018 (2)0.63563 (5)0.01595 (17)
H7A0.46730.60980.67190.019*
C80.38645 (4)0.7774 (2)0.61797 (5)0.01833 (18)
H8A0.37570.93760.58940.022*
H8B0.41210.84360.65970.022*
C90.34569 (4)0.6674 (2)0.61674 (5)0.01850 (18)
H9A0.31790.63510.57390.022*
H9B0.35450.48690.63910.022*
C100.29330 (3)0.9775 (2)0.61435 (5)0.01680 (17)
H10A0.27050.91460.57360.020*
C110.28058 (3)1.1927 (2)0.64174 (5)0.01518 (16)
C120.23492 (3)1.3059 (2)0.60942 (5)0.01720 (17)
C130.22371 (4)1.5054 (2)0.63682 (5)0.02008 (19)
H13A0.19321.57940.61440.024*
C140.25840 (4)1.5922 (2)0.69772 (5)0.01877 (18)
H14A0.25121.72380.71660.023*
C150.30421 (3)1.4814 (2)0.73076 (5)0.01553 (16)
C160.31517 (3)1.2865 (2)0.70305 (5)0.01529 (16)
H16A0.34591.21660.72540.018*
C170.43124 (4)0.1644 (2)0.48093 (5)0.01965 (19)
C180.34081 (4)1.5713 (2)0.79726 (5)0.01786 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01659 (11)0.03460 (15)0.01714 (11)0.00362 (10)0.00552 (9)0.00367 (10)
Cl20.01410 (11)0.03396 (15)0.01727 (11)0.00410 (9)0.00514 (9)0.00528 (10)
F10.0227 (3)0.0324 (4)0.0215 (3)0.0075 (3)0.0113 (3)0.0041 (3)
F20.0443 (4)0.0263 (4)0.0198 (3)0.0003 (3)0.0181 (3)0.0034 (3)
F30.0314 (4)0.0401 (5)0.0311 (4)0.0075 (3)0.0189 (3)0.0113 (3)
F40.0281 (4)0.0420 (4)0.0175 (3)0.0100 (3)0.0147 (3)0.0003 (3)
F50.0142 (3)0.0474 (5)0.0236 (3)0.0012 (3)0.0072 (3)0.0106 (3)
F60.0474 (5)0.0173 (3)0.0210 (3)0.0056 (3)0.0127 (3)0.0035 (3)
N10.0159 (4)0.0195 (4)0.0181 (4)0.0028 (3)0.0113 (3)0.0004 (3)
N20.0155 (4)0.0207 (4)0.0203 (4)0.0015 (3)0.0119 (3)0.0020 (3)
C10.0134 (4)0.0203 (4)0.0162 (4)0.0010 (3)0.0081 (3)0.0004 (3)
C20.0133 (4)0.0225 (5)0.0226 (5)0.0040 (3)0.0099 (4)0.0018 (4)
C30.0173 (4)0.0184 (4)0.0241 (5)0.0029 (3)0.0144 (4)0.0005 (4)
C40.0154 (4)0.0172 (4)0.0178 (4)0.0009 (3)0.0111 (3)0.0005 (3)
C50.0141 (4)0.0172 (4)0.0169 (4)0.0020 (3)0.0101 (3)0.0014 (3)
C60.0128 (4)0.0171 (4)0.0167 (4)0.0017 (3)0.0094 (3)0.0012 (3)
C70.0158 (4)0.0166 (4)0.0172 (4)0.0011 (3)0.0110 (3)0.0003 (3)
C80.0186 (4)0.0171 (4)0.0233 (5)0.0024 (3)0.0149 (4)0.0002 (3)
C90.0155 (4)0.0200 (4)0.0217 (4)0.0007 (3)0.0122 (4)0.0031 (4)
C100.0145 (4)0.0192 (4)0.0167 (4)0.0002 (3)0.0096 (3)0.0019 (3)
C110.0132 (4)0.0166 (4)0.0164 (4)0.0012 (3)0.0094 (3)0.0000 (3)
C120.0127 (4)0.0208 (4)0.0152 (4)0.0011 (3)0.0071 (3)0.0012 (3)
C130.0147 (4)0.0240 (5)0.0197 (4)0.0040 (4)0.0096 (4)0.0012 (4)
C140.0174 (4)0.0199 (4)0.0202 (4)0.0022 (4)0.0122 (4)0.0013 (4)
C150.0152 (4)0.0158 (4)0.0158 (4)0.0007 (3)0.0096 (3)0.0002 (3)
C160.0131 (4)0.0168 (4)0.0163 (4)0.0005 (3)0.0091 (3)0.0002 (3)
C170.0212 (4)0.0203 (5)0.0195 (4)0.0018 (4)0.0135 (4)0.0005 (4)
C180.0181 (4)0.0184 (4)0.0174 (4)0.0021 (3)0.0110 (4)0.0008 (3)
Geometric parameters (Å, º) top
Cl1—C11.7362 (11)C5—H5A0.9300
Cl2—C121.7358 (10)C6—C71.4746 (14)
F1—C171.3433 (13)C7—H7A0.9300
F2—C171.3389 (13)C8—C91.5253 (15)
F3—C171.3348 (13)C8—H8A0.9700
F4—C181.3419 (12)C8—H8B0.9700
F5—C181.3325 (13)C9—H9A0.9700
F6—C181.3354 (13)C9—H9B0.9700
N1—C71.2693 (13)C10—C111.4771 (14)
N1—C81.4580 (13)C10—H10A0.9300
N2—C101.2663 (13)C11—C121.3977 (14)
N2—C91.4517 (13)C11—C161.4004 (14)
C1—C21.3901 (15)C12—C131.3944 (14)
C1—C61.4000 (14)C13—C141.3839 (15)
C2—C31.3853 (15)C13—H13A0.9300
C2—H2A0.9300C14—C151.3963 (14)
C3—C41.3933 (14)C14—H14A0.9300
C3—H3A0.9300C15—C161.3803 (14)
C4—C51.3858 (14)C15—C181.4979 (14)
C4—C171.4989 (15)C16—H16A0.9300
C5—C61.3955 (14)
Cl···Ni3.2714 (10)F···Fii2.9192 (11)
C7—N1—C8116.62 (9)H9A—C9—H9B108.3
C10—N2—C9118.26 (9)N2—C10—C11120.47 (9)
C2—C1—C6121.96 (9)N2—C10—H10A119.8
C2—C1—Cl1117.63 (8)C11—C10—H10A119.8
C6—C1—Cl1120.41 (8)C12—C11—C16117.82 (9)
C3—C2—C1119.69 (9)C12—C11—C10122.86 (9)
C3—C2—H2A120.2C16—C11—C10119.32 (9)
C1—C2—H2A120.2C13—C12—C11121.63 (9)
C2—C3—C4119.18 (9)C13—C12—Cl2117.78 (8)
C2—C3—H3A120.4C11—C12—Cl2120.58 (8)
C4—C3—H3A120.4C14—C13—C12119.43 (9)
C5—C4—C3120.80 (9)C14—C13—H13A120.3
C5—C4—C17117.96 (9)C12—C13—H13A120.3
C3—C4—C17121.24 (9)C13—C14—C15119.74 (9)
C4—C5—C6120.96 (9)C13—C14—H14A120.1
C4—C5—H5A119.5C15—C14—H14A120.1
C6—C5—H5A119.5C16—C15—C14120.47 (9)
C5—C6—C1117.39 (9)C16—C15—C18120.66 (9)
C5—C6—C7120.12 (9)C14—C15—C18118.84 (9)
C1—C6—C7122.47 (9)C15—C16—C11120.89 (9)
N1—C7—C6121.08 (9)C15—C16—H16A119.6
N1—C7—H7A119.5C11—C16—H16A119.6
C6—C7—H7A119.5F3—C17—F2106.87 (9)
N1—C8—C9109.64 (9)F3—C17—F1106.95 (9)
N1—C8—H8A109.7F2—C17—F1105.83 (9)
C9—C8—H8A109.7F3—C17—C4112.89 (9)
N1—C8—H8B109.7F2—C17—C4112.02 (9)
C9—C8—H8B109.7F1—C17—C4111.84 (8)
H8A—C8—H8B108.2F5—C18—F6106.77 (9)
N2—C9—C8109.09 (9)F5—C18—F4106.53 (9)
N2—C9—H9A109.9F6—C18—F4105.93 (9)
C8—C9—H9A109.9F5—C18—C15113.15 (9)
N2—C9—H9B109.9F6—C18—C15112.32 (9)
C8—C9—H9B109.9F4—C18—C15111.66 (9)
C6—C1—C2—C30.55 (17)C16—C11—C12—Cl2179.14 (8)
Cl1—C1—C2—C3179.64 (9)C10—C11—C12—Cl20.15 (15)
C1—C2—C3—C40.30 (16)C11—C12—C13—C140.63 (17)
C2—C3—C4—C50.22 (16)Cl2—C12—C13—C14178.44 (9)
C2—C3—C4—C17179.54 (10)C12—C13—C14—C150.58 (17)
C3—C4—C5—C60.51 (15)C13—C14—C15—C160.18 (16)
C17—C4—C5—C6179.26 (9)C13—C14—C15—C18178.10 (10)
C4—C5—C6—C10.27 (15)C14—C15—C16—C110.92 (15)
C4—C5—C6—C7178.24 (9)C18—C15—C16—C11177.33 (9)
C2—C1—C6—C50.26 (15)C12—C11—C16—C150.86 (15)
Cl1—C1—C6—C5179.93 (8)C10—C11—C16—C15178.16 (9)
C2—C1—C6—C7178.73 (10)C5—C4—C17—F3177.37 (9)
Cl1—C1—C6—C71.46 (14)C3—C4—C17—F32.39 (15)
C8—N1—C7—C6178.56 (9)C5—C4—C17—F256.68 (13)
C5—C6—C7—N113.43 (15)C3—C4—C17—F2123.09 (11)
C1—C6—C7—N1168.13 (10)C5—C4—C17—F161.95 (13)
C7—N1—C8—C9129.40 (10)C3—C4—C17—F1118.28 (11)
C10—N2—C9—C8122.57 (11)C16—C15—C18—F58.87 (14)
N1—C8—C9—N2169.41 (8)C14—C15—C18—F5172.85 (10)
C9—N2—C10—C11179.84 (9)C16—C15—C18—F6129.85 (11)
N2—C10—C11—C12178.81 (10)C14—C15—C18—F651.87 (13)
N2—C10—C11—C160.17 (15)C16—C15—C18—F4111.31 (11)
C16—C11—C12—C130.09 (16)C14—C15—C18—F466.97 (13)
C10—C11—C12—C13178.90 (10)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···F30.932.432.7415 (14)100
C7—H7A···Cl10.932.713.0811 (12)105
C10—H10A···Cl20.932.723.0925 (13)105
C16—H16A···F50.932.402.7325 (13)101

Experimental details

Crystal data
Chemical formulaC18H12Cl2F6N2
Mr441.20
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)35.7299 (8), 4.6663 (1), 27.1134 (6)
β (°) 127.851 (2)
V3)3569.44 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.59 × 0.27 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.786, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
61787, 7964, 6400
Rint0.037
(sin θ/λ)max1)0.813
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.111, 1.10
No. of reflections7964
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.40

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), 'SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected interatomic distances (Å) top
Cl···Ni3.2714 (10)F···Fii2.9192 (11)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···F30.932.432.7415 (14)100
C7—H7A···Cl10.932.713.0811 (12)105
C10—H10A···Cl20.932.723.0925 (13)105
C16—H16A···F50.932.402.7325 (13)101
 

Footnotes

Additional correspondance author, e-mail: zsrkk@yahoo.com.

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for the award of a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715–738. London: Pergamon.  Google Scholar
First citationFun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008a). Acta Cryst. E64, o1374–o1375.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008b). Acta Cryst. E64, o1471.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHou, B., Friedman, N., Ruhman, S., Sheves, M. & Ottolenghi, M. (2001). J. Phys. Chem. B, 105, 7042–7048.  Web of Science CrossRef CAS Google Scholar
First citationKia, R., Mirkhani, V., Harkema, S. & van Hummel, G. J. (2007). Inorg. Chim. Acta, 360, 3369–3375.  Web of Science CSD CrossRef CAS Google Scholar
First citationKia, R., Mirkhani, V., Kalman, A. & Deak, A. (2007). Polyhedron, 26, 1117–1716.  Google Scholar
First citationPal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880–3889.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1722-o1723
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds