organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Amino-5-thioxo-4,5-di­hydro-1H-1,2,4-triazol-3-yl)pyridinium chloride

aMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 3 August 2008; accepted 13 August 2008; online 20 August 2008)

The crystal structure of the title compound, C7H8N5S+·Cl, is stabilized by inter­molecular N—H⋯Cl and N—H⋯S hydrogen-bond inter­actions.

Related literature

For related literature, see: Jian et al. (2006[Jian, F.-F., Yu, H.-Q., Qiao, Y.-B. & Liang, T.-L. (2006). Acta Cryst. E62, o3416-o3417.]); Shi et al. (1995[Shi, Y. N., Lu, Y. C. & Fang, J. X. (1995). Chem. J. Chin. Univ. 16, 1710-1713.]); Xu et al. (2002[Xu, L. Z., Zhang, S. S., Li, H. J. & Jiao, K. (2002). Chem. Res. Chin. Univ. 18, 284-286.]).

[Scheme 1]

Experimental

Crystal data
  • C7H8N5S+·Cl

  • Mr = 229.69

  • Monoclinic, P 21 /c

  • a = 7.6740 (15) Å

  • b = 13.374 (3) Å

  • c = 9.965 (2) Å

  • β = 104.70 (3)°

  • V = 989.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 293 (2) K

  • 0.20 × 0.15 × 0.11 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2238 measured reflections

  • 2091 independent reflections

  • 1712 reflections with I > 2σ(I)

  • Rint = 0.050

  • 3 standard reflections every 100 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.111

  • S = 0.96

  • 2091 reflections

  • 135 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.86 2.43 3.099 (2) 135
N3—H3A⋯Cl1ii 0.86 2.17 3.027 (2) 176
N5—H5B⋯S1iii 0.84 (3) 2.72 (3) 3.466 (3) 148 (3)
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y+2, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

An important type of fungicides, triazole compounds are highly efficient and of low tocicity (Shi et al.,1995; Xu, et al., 2002). The part of our research is to find triazole with higher cooperational activity, we synthesized the title compound (I) and report its crystal structure here.

In the crystal structure of compound (I) (Fig. 1), the dihedral angle formed by the triazole ring (N1/N3/N4/C6/C7) and the pyridine ring (N1/C1-C5) was 0.7 (4)°. The CS bond length [1.676 (3) Å] is in agreement with that observed before (Jian, et al., 2006). There are intermolecular N–H···Cl and N—H···S hydrogen-bond interactions to stabilize the crystal structure (Table 1).

Related literature top

For related literature, see: Jian et al. (2006); Shi et al. (1995); Xu et al. (2002).

Experimental top

The title compound (I) was prepared by the process as following: ethyl isonicotinate 1.51 g (0.01 mol) and hydrazine hydrate 0.32 g (0.01 mol) with ethanol at 377 K for 3 h, afford ivory-white compound A 1.32 g (yield 96%), then add 0.06 ml carbon disulfide and KOH 0.56 g (0.01 mol) with ethanol, stirred at room temperature for 5 h, afford yellow compound B 2.0 g (yield 85.6%). At last, add 0.32 g hydrazine hydrate to the compound B with water at 377 K for 12 h. Single crystals suitable for X-ray measurements were obtained by recrystallization from DMF-HCl (3:1) at 334 K.

Refinement top

The H atoms of the NH2 group were found from a difference Fourier map and refined freely. The other H atoms were positioned geometrically and allowed to ride on their parent atoms, with N—H and C—H distances of 0.86 and 0.93 Å, respectively, and with Uiso(H) = 1.2Ueq of the parent atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
4-(4-Amino-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-3-yl)pyridinium chloride top
Crystal data top
C7H8N5S+·ClF(000) = 472
Mr = 229.69Dx = 1.542 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 7.6740 (15) Åθ = 4–14°
b = 13.374 (3) ŵ = 0.56 mm1
c = 9.965 (2) ÅT = 293 K
β = 104.70 (3)°Bar, yellow
V = 989.3 (4) Å30.20 × 0.15 × 0.11 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.050
Radiation source: fine-focus sealed tubeθmax = 27.0°, θmin = 2.6°
Graphite monochromatorh = 09
ω scansk = 015
2238 measured reflectionsl = 1111
2091 independent reflections3 standard reflections every 100 reflections
1712 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.6426P]
where P = (Fo2 + 2Fc2)/3
2091 reflections(Δ/σ)max < 0.001
135 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C7H8N5S+·ClV = 989.3 (4) Å3
Mr = 229.69Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6740 (15) ŵ = 0.56 mm1
b = 13.374 (3) ÅT = 293 K
c = 9.965 (2) Å0.20 × 0.15 × 0.11 mm
β = 104.70 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.050
2238 measured reflections3 standard reflections every 100 reflections
2091 independent reflections intensity decay: none
1712 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.35 e Å3
2091 reflectionsΔρmin = 0.29 e Å3
135 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.80625 (8)0.86963 (4)0.12228 (5)0.04585 (18)
S10.75196 (9)0.94026 (5)0.52007 (7)0.0565 (2)
N10.0222 (2)0.78167 (16)0.16338 (19)0.0469 (5)
H1A0.05770.77350.24050.056*
N20.4905 (2)0.89786 (14)0.28259 (18)0.0376 (4)
N30.5917 (2)0.76955 (15)0.40203 (19)0.0452 (5)
H3A0.65050.73150.46760.054*
N40.4694 (3)0.73433 (15)0.28792 (19)0.0439 (4)
N50.4688 (4)0.99550 (16)0.2289 (3)0.0540 (6)
C10.0851 (3)0.7017 (2)0.0868 (2)0.0494 (6)
H1B0.04300.63830.11730.059*
C20.2114 (3)0.71260 (18)0.0365 (2)0.0459 (5)
H2A0.25510.65680.09030.055*
C30.2744 (3)0.80777 (17)0.0811 (2)0.0362 (5)
C40.2062 (3)0.88900 (18)0.0017 (2)0.0441 (5)
H4B0.24620.95330.02540.053*
C50.0786 (3)0.87364 (19)0.1248 (2)0.0491 (6)
H5C0.03180.92780.18100.059*
C60.4102 (3)0.81438 (16)0.2152 (2)0.0367 (5)
C70.6114 (3)0.86845 (18)0.4025 (2)0.0402 (5)
H5A0.575 (5)1.011 (3)0.211 (4)0.092 (12)*
H5B0.443 (4)1.032 (2)0.290 (3)0.065 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0495 (3)0.0475 (3)0.0356 (3)0.0015 (2)0.0015 (2)0.0021 (2)
S10.0499 (4)0.0593 (4)0.0497 (4)0.0019 (3)0.0071 (3)0.0162 (3)
N10.0392 (10)0.0627 (13)0.0340 (10)0.0050 (9)0.0007 (7)0.0061 (9)
N20.0357 (9)0.0395 (9)0.0353 (9)0.0011 (7)0.0044 (7)0.0037 (7)
N30.0436 (10)0.0493 (11)0.0356 (9)0.0030 (9)0.0030 (8)0.0022 (8)
N40.0440 (10)0.0465 (11)0.0354 (9)0.0058 (8)0.0004 (8)0.0004 (8)
N50.0633 (15)0.0395 (12)0.0503 (13)0.0003 (10)0.0024 (11)0.0020 (10)
C10.0500 (13)0.0506 (14)0.0445 (12)0.0123 (11)0.0063 (10)0.0096 (11)
C20.0486 (12)0.0445 (13)0.0402 (12)0.0047 (10)0.0035 (9)0.0002 (10)
C30.0324 (10)0.0451 (12)0.0317 (10)0.0027 (9)0.0090 (8)0.0032 (9)
C40.0464 (12)0.0421 (12)0.0397 (11)0.0016 (10)0.0034 (9)0.0017 (9)
C50.0498 (13)0.0509 (14)0.0403 (12)0.0037 (11)0.0000 (10)0.0018 (10)
C60.0340 (10)0.0409 (11)0.0350 (10)0.0026 (8)0.0081 (8)0.0009 (8)
C70.0348 (10)0.0491 (13)0.0347 (11)0.0002 (9)0.0055 (8)0.0043 (9)
Geometric parameters (Å, º) top
S1—C71.679 (2)N5—H5A0.90 (4)
N1—C51.328 (3)N5—H5B0.84 (3)
N1—C11.331 (3)C1—C21.366 (3)
N1—H1A0.8600C1—H1B0.9300
N2—C61.366 (3)C2—C31.394 (3)
N2—C71.371 (3)C2—H2A0.9300
N2—N51.405 (3)C3—C41.385 (3)
N3—C71.331 (3)C3—C61.474 (3)
N3—N41.362 (3)C4—C51.376 (3)
N3—H3A0.8600C4—H4B0.9300
N4—C61.308 (3)C5—H5C0.9300
C5—N1—C1122.28 (19)C1—C2—H2A120.2
C5—N1—H1A118.9C3—C2—H2A120.2
C1—N1—H1A118.9C4—C3—C2118.6 (2)
C6—N2—C7108.35 (18)C4—C3—C6124.5 (2)
C6—N2—N5125.26 (18)C2—C3—C6116.9 (2)
C7—N2—N5125.94 (19)C5—C4—C3119.3 (2)
C7—N3—N4113.60 (18)C5—C4—H4B120.3
C7—N3—H3A123.2C3—C4—H4B120.3
N4—N3—H3A123.2N1—C5—C4120.1 (2)
C6—N4—N3104.37 (18)N1—C5—H5C119.9
N2—N5—H5A105 (2)C4—C5—H5C119.9
N2—N5—H5B107 (2)N4—C6—N2110.29 (18)
H5A—N5—H5B114 (3)N4—C6—C3121.29 (19)
N1—C1—C2120.1 (2)N2—C6—C3128.43 (19)
N1—C1—H1B120.0N3—C7—N2103.35 (18)
C2—C1—H1B120.0N3—C7—S1128.55 (17)
C1—C2—C3119.6 (2)N2—C7—S1128.10 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.862.433.099 (2)135
N3—H3A···Cl1ii0.862.173.027 (2)176
N5—H5B···S1iii0.84 (3)2.72 (3)3.466 (3)148 (3)
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x, y+3/2, z+1/2; (iii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC7H8N5S+·Cl
Mr229.69
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.6740 (15), 13.374 (3), 9.965 (2)
β (°) 104.70 (3)
V3)989.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.56
Crystal size (mm)0.20 × 0.15 × 0.11
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2238, 2091, 1712
Rint0.050
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.111, 0.96
No. of reflections2091
No. of parameters135
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.29

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.862.433.099 (2)135.3
N3—H3A···Cl1ii0.862.173.027 (2)176.1
N5—H5B···S1iii0.84 (3)2.72 (3)3.466 (3)148 (3)
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x, y+3/2, z+1/2; (iii) x+1, y+2, z+1.
 

References

First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJian, F.-F., Yu, H.-Q., Qiao, Y.-B. & Liang, T.-L. (2006). Acta Cryst. E62, o3416–o3417.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Y. N., Lu, Y. C. & Fang, J. X. (1995). Chem. J. Chin. Univ. 16, 1710–1713.  CAS Google Scholar
First citationXu, L. Z., Zhang, S. S., Li, H. J. & Jiao, K. (2002). Chem. Res. Chin. Univ. 18, 284–286.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds