organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E,3E)-3-(Pyrazin-2-yloxyimino)butan-2-one oxime

aNaval Aeronautical and Astronautical University, Yantai 264001, People's Republic of China, and bDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: chenjuna1982@yahoo.com.cn

(Received 14 August 2008; accepted 22 August 2008; online 30 August 2008)

In the title compound, C8H10N4O2, all non-H atoms are nearly coplanar [maximum deviation 0.1256 (16) Å for the methyl C furthest from the ring]. Inter­molecular O—H⋯N hydrogen bonds link adjacent mol­ecules into a one-dimensional zigzag chain along the c axis. There is also a weak ππ stacking inter­action between neighbouring pyrazine rings, with a centroid–centroid distance of 4.0432 (15) Å.

Related literature

For related papers, see: Wang et al. (2008[Wang, W.-Z., Ismayilov, R. H., Lee, G.-H., Wang, H.-T., Wang, R.-R. & Peng, S.-M. (2008). Eur. J. Inorg. Chem. pp. 312-321.]); Khan et al. (1993[Khan, O., Stumpf, H., Pei, Y. & Sletten, J. (1993). Mol. Cryst. Liq. Cryst. 233, 231-246.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10N4O2

  • Mr = 194.20

  • Monoclinic, C 2/c

  • a = 18.174 (4) Å

  • b = 10.962 (3) Å

  • c = 13.271 (3) Å

  • β = 132.217 (3)°

  • V = 1958.1 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 (2) K

  • 0.48 × 0.40 × 0.28 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.954, Tmax = 0.973

  • 5536 measured reflections

  • 2134 independent reflections

  • 1431 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.172

  • S = 1.06

  • 2134 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2i 0.81 1.98 2.774 (2) 166
Symmetry code: (i) [x, -y+1, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Pyrazine, (2E,3E)-butane-2,3-dione dioxime and their derivatives belong to useful compounds and a large number of complexes have been synthesized with them as ligands (Wang et al., (2008) and Khan et al. (1993)). We are interested in complexes with the title compound as ligand, therefore we synthesized the title compound and obtained its crystal structure (I).

Fig. 1 shows the molecular structure of the title compound and the all of non-hydrogen atoms define a plane with a maximum deviation of 0.1256 (16) Å for atom C4. There is a weak π-π stacking interaction involving symmetry-related pyrazine rings, which resulted in the formation of a dimer of two neighbor molecules, and the relevant distances being Cg1···Cg1i = 4.0432 (15) Å and Cg1···Cg1iperp = 3.248 Å and α = 5.71°; [symmetry code: (i) -x, y, 1/2-z; Cg1 is the centroid of the N1N2/C2C6C7C8 ring, Cg1···Cg2iperp is the perpendicular distance from ring Cg1 to ring Cg1i; α is the dihedral angle between ring plane Cg1 and ring plane Cg1i]. In addition to the π-π interaction there exists O1—H1···N2ii [symmetry code: (ii) x, 1-y,-1/2+z] hydrogen bond and it give rise a one-dimensional zigzag chain along c axis as shown in Fig. 2 (Table 1).

Related literature top

For related papers, see: Wang et al. (2008) and Khan et al. (1993).

Experimental top

Powder (2E,3E)-butane-2,3-dione O3-(2-pyrazyl) dioxime (0.3720 g, 1.92 mmole) was dissolved in 20 ml solution containing 10 ml chloroform and 10 ml me thanol, and the colorless single crystals were obtained after the solution had been allowed to stand at room temperature for a month.

Refinement top

Oxygen-bound H atom was located in a difference Fourier map, and refined as riding in its as found position with O—H = 0.81 Å, Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions (C—H = 0.96 Å for methyl group and C—H = 0.93 Å for pyrazinyl H atoms) and refined as riding with Uiso = 1.5Ueq(C) for methyl H and Uiso = 1.2Ueq(C) for pyrazinyl H atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Structure of title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Hydrogen bonds (dashed lines) between neighbouring molecules.
(2E,3E)-3-(Pyrazin-2-yloxyimino)butan-2-one oxime top
Crystal data top
C8H10N4O2F(000) = 816
Mr = 194.20Dx = 1.318 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1722 reflections
a = 18.174 (4) Åθ = 2.4–25.5°
b = 10.962 (3) ŵ = 0.10 mm1
c = 13.271 (3) ÅT = 298 K
β = 132.217 (3)°Block, colourless
V = 1958.1 (8) Å30.48 × 0.40 × 0.28 mm
Z = 8
Data collection top
Bruker SMART APEX CCD
diffractometer
2134 independent reflections
Radiation source: fine-focus sealed tube1431 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2223
Tmin = 0.954, Tmax = 0.973k = 1313
5536 measured reflectionsl = 169
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1P)2 + 0.0347P]
where P = (Fo2 + 2Fc2)/3
2134 reflections(Δ/σ)max = 0.045
129 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C8H10N4O2V = 1958.1 (8) Å3
Mr = 194.20Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.174 (4) ŵ = 0.10 mm1
b = 10.962 (3) ÅT = 298 K
c = 13.271 (3) Å0.48 × 0.40 × 0.28 mm
β = 132.217 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2134 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1431 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.973Rint = 0.025
5536 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.06Δρmax = 0.19 e Å3
2134 reflectionsΔρmin = 0.16 e Å3
129 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.12820 (11)0.43770 (16)0.26471 (15)0.0584 (4)
C20.12053 (12)0.20436 (15)0.48282 (18)0.0630 (5)
H20.12340.28710.50060.076*
C30.12962 (12)0.56843 (16)0.29319 (16)0.0583 (4)
C40.13696 (16)0.60601 (15)0.4082 (2)0.0753 (6)
H4A0.19450.65660.47020.113*
H4B0.14260.53470.45500.113*
H4C0.07850.65080.37300.113*
C50.12486 (18)0.39842 (18)0.1538 (2)0.0813 (6)
H5A0.17070.33250.18570.122*
H5B0.14280.46580.12780.122*
H5C0.05890.37180.07660.122*
C60.12287 (11)0.16599 (15)0.38501 (16)0.0584 (4)
C70.11298 (15)0.02865 (17)0.4241 (2)0.0813 (6)
H70.10960.11130.40560.098*
C80.11035 (14)0.00630 (17)0.5209 (2)0.0764 (6)
H80.10580.05300.56660.092*
N10.12018 (11)0.05109 (14)0.35580 (16)0.0742 (5)
N20.11418 (11)0.12313 (13)0.55072 (16)0.0716 (5)
N30.12995 (10)0.36663 (12)0.34221 (14)0.0600 (4)
N40.12369 (11)0.64309 (14)0.21366 (14)0.0661 (4)
O10.12332 (10)0.76336 (11)0.24571 (14)0.0821 (4)
H10.11300.80350.18630.123*
O20.12790 (9)0.24281 (11)0.30873 (12)0.0687 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0597 (9)0.0721 (11)0.0488 (9)0.0017 (7)0.0386 (8)0.0016 (8)
C20.0751 (11)0.0516 (9)0.0704 (10)0.0022 (7)0.0522 (9)0.0027 (8)
C30.0666 (10)0.0658 (11)0.0556 (9)0.0004 (7)0.0464 (8)0.0025 (8)
C40.1091 (14)0.0730 (13)0.0787 (12)0.0015 (10)0.0774 (12)0.0034 (9)
C50.1160 (16)0.0838 (14)0.0661 (11)0.0031 (10)0.0701 (12)0.0048 (9)
C60.0540 (9)0.0571 (10)0.0575 (9)0.0021 (7)0.0348 (8)0.0077 (8)
C70.0914 (13)0.0554 (11)0.0976 (14)0.0045 (9)0.0637 (12)0.0121 (11)
C80.0828 (12)0.0547 (12)0.0963 (15)0.0014 (8)0.0620 (12)0.0023 (10)
N10.0824 (10)0.0619 (9)0.0805 (10)0.0055 (7)0.0556 (9)0.0162 (8)
N20.0881 (10)0.0589 (10)0.0842 (11)0.0021 (7)0.0647 (10)0.0014 (7)
N30.0698 (9)0.0601 (9)0.0577 (8)0.0018 (6)0.0459 (8)0.0046 (7)
N40.0831 (10)0.0687 (10)0.0660 (9)0.0001 (7)0.0581 (8)0.0013 (7)
O10.1258 (11)0.0661 (9)0.0898 (9)0.0013 (7)0.0869 (9)0.0011 (7)
O20.0858 (8)0.0665 (8)0.0648 (8)0.0039 (6)0.0550 (7)0.0097 (6)
Geometric parameters (Å, º) top
C1—N31.273 (2)C5—H5B0.9600
C1—C31.478 (3)C5—H5C0.9600
C1—C51.495 (2)C6—N11.309 (2)
C2—N21.326 (2)C6—O21.366 (2)
C2—C61.392 (2)C7—N11.327 (2)
C2—H20.9300C7—C81.372 (3)
C3—N41.282 (2)C7—H70.9300
C3—C41.497 (2)C8—N21.328 (2)
C4—H4A0.9600C8—H80.9300
C4—H4B0.9600N3—O21.4209 (18)
C4—H4C0.9600N4—O11.3868 (18)
C5—H5A0.9600O1—H10.8074
N3—C1—C3113.57 (14)C1—C5—H5C109.5
N3—C1—C5125.55 (17)H5A—C5—H5C109.5
C3—C1—C5120.88 (15)H5B—C5—H5C109.5
N2—C2—C6120.13 (17)N1—C6—O2112.42 (14)
N2—C2—H2119.9N1—C6—C2123.25 (17)
C6—C2—H2119.9O2—C6—C2124.33 (16)
N4—C3—C1115.55 (14)N1—C7—C8122.47 (18)
N4—C3—C4124.34 (16)N1—C7—H7118.8
C1—C3—C4120.11 (14)C8—C7—H7118.8
C3—C4—H4A109.5N2—C8—C7121.37 (18)
C3—C4—H4B109.5N2—C8—H8119.3
H4A—C4—H4B109.5C7—C8—H8119.3
C3—C4—H4C109.5C6—N1—C7115.64 (16)
H4A—C4—H4C109.5C2—N2—C8117.12 (17)
H4B—C4—H4C109.5C1—N3—O2110.52 (14)
C1—C5—H5A109.5C3—N4—O1111.69 (13)
C1—C5—H5B109.5N4—O1—H1105.3
H5A—C5—H5B109.5C6—O2—N3110.96 (12)
N3—C1—C3—N4177.17 (13)C6—C2—N2—C80.0 (2)
C5—C1—C3—N42.7 (2)C7—C8—N2—C20.1 (3)
N3—C1—C3—C42.5 (2)C3—C1—N3—O2179.69 (12)
C5—C1—C3—C4177.62 (17)C5—C1—N3—O20.2 (2)
N2—C2—C6—N10.8 (2)C1—C3—N4—O1178.66 (13)
N2—C2—C6—O2179.03 (15)C4—C3—N4—O11.0 (2)
N1—C7—C8—N20.5 (3)N1—C6—O2—N3179.56 (12)
O2—C6—N1—C7178.54 (14)C2—C6—O2—N30.3 (2)
C2—C6—N1—C71.3 (2)C1—N3—O2—C6175.83 (12)
C8—C7—N1—C61.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.811.982.774 (2)166
Symmetry code: (i) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC8H10N4O2
Mr194.20
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)18.174 (4), 10.962 (3), 13.271 (3)
β (°) 132.217 (3)
V3)1958.1 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.48 × 0.40 × 0.28
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.954, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
5536, 2134, 1431
Rint0.025
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.172, 1.06
No. of reflections2134
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.16

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.811.982.774 (2)165.8
Symmetry code: (i) x, y+1, z1/2.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKhan, O., Stumpf, H., Pei, Y. & Sletten, J. (1993). Mol. Cryst. Liq. Cryst. 233, 231–246.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, W.-Z., Ismayilov, R. H., Lee, G.-H., Wang, H.-T., Wang, R.-R. & Peng, S.-M. (2008). Eur. J. Inorg. Chem. pp. 312–321.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds