metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1184-m1185

Aqua­(hexa­methyl­ene­tetra­mine-κN)bis­­(methanol-κO)bis­­(thio­cyanato-κN)cobalt(II)

aInstitute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
*Correspondence e-mail: baiyan@henu.edu.cn

(Received 16 May 2008; accepted 25 July 2008; online 20 August 2008)

In the title complex, [Co(NCS)2(C6H12N4)(CH4O)2(H2O)], the six-coordinated Co atom has a slightly distorted octa­hedral geometry. The molecules are linked by intermolecular O—H⋯S and O—H⋯N hydrogen bonds, forming a three- dimensional crystal structure. Intramolecular C—H⋯N and C—H⋯O hydrogen bonds are also present.

Related literature

For information on the self-assembly of transition-metal complexes, see: Guo et al. (2002[Guo, D., Duan, C.-Y., Fang, C.-J. & Meng, Q.-J. (2002). Dalton Trans. pp. 834-836.]); Kumar et al. (2007[Kumar, D. K., Das, A. & Dastidar, P. (2007). Cryst. Growth Des. 7, 205-207.]); Venkateswaran et al. (2007[Venkateswaran, R., Balakrishna, M. S., Mobin, S. M. & Tuononen, H. M. (2007). Inorg. Chem. 46, 6535-6541.]); Chi et al. (2008[Chi, Y.-N., Cui, F.-Y., Xu, Y.-Q. & Hu, C.-W. (2008). J. Mol. Struct. 875, 42-49.]). For complexes including hexa­methyl­enetetra­mine (hmt) as ligand, see: Liu et al. (2006[Liu, Q., Xu, Z. & Yu, K. B. (2006). Chin. J. Inorg. Chem. 22, 1095-1098.]); Zhang et al. (1999[Zhang, Y., Li, J., Xu, H., Hou, H., Nishiura, M. & Imamoto, T. (1999). J. Mol. Struct. 510, 191-196.]); Meng et al. (2001[Meng, X. R., Li, L., Song, Y. L., Zhu, Y., Du, C. X., Fan, Y. T. & Hou, H. W. (2001). Acta Chim. Sinica, 59, 1277-1282.]); Li et al. (2002[Li, G., Zhu, Y., Li, L. K., Hou, H. W., Fan, Y. & Du, C. X. (2002). Chin. J. Inorg. Chem. 18, 537-540.], 2007[Li, X.-L., Niu, D.-Z. & Lu, Z.-S. (2007). Acta Cryst. E63, m2478.]); Banerjee et al. (2007[Banerjee, S., Choudhury, A. R., Guru Row, T. N., Chaudhuri, S. & Ghosh, A. (2007). Polyhedron, 26, 24-32.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(NCS)2(C6H12N4)(CH4O)2(H2O)]

  • Mr = 397.39

  • Orthorhombic, P b c a

  • a = 14.1128 (8) Å

  • b = 15.3684 (9) Å

  • c = 15.9839 (9) Å

  • V = 3466.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.25 mm−1

  • T = 296 (2) K

  • 0.30 × 0.30 × 0.25 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.691, Tmax = 0.730

  • 20785 measured reflections

  • 4287 independent reflections

  • 3528 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.075

  • S = 1.04

  • 4287 reflections

  • 217 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—N2 2.0400 (15)
Co1—N1 2.0585 (15)
Co1—O2 2.1024 (13)
Co1—O1W 2.1268 (14)
Co1—O1 2.1760 (13)
Co1—N3 2.2785 (13)
N2—Co1—N1 176.69 (6)
N2—Co1—O2 90.94 (6)
N1—Co1—O2 90.31 (6)
N2—Co1—O1W 89.59 (6)
N1—Co1—O1W 87.34 (6)
O2—Co1—O1W 90.09 (6)
N2—Co1—O1 89.30 (6)
N1—Co1—O1 89.35 (6)
O2—Co1—O1 178.06 (6)
O1W—Co1—O1 87.99 (6)
N2—Co1—N3 92.06 (6)
N1—Co1—N3 90.98 (5)
O2—Co1—N3 91.53 (5)
O1W—Co1—N3 177.67 (6)
O1—Co1—N3 90.39 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯N1 0.97 2.52 3.119 (2) 120
C4—H4B⋯O1 0.97 2.56 3.167 (2) 121
C9—H9D⋯N2 0.96 2.56 3.181 (3) 123
O1—H1⋯N5i 0.80 (2) 2.08 (3) 2.824 (2) 156 (2)
O1W—H1WA⋯N6ii 0.76 (2) 2.07 (2) 2.821 (2) 168 (3)
O2—H2⋯N4iii 0.78 (2) 1.97 (2) 2.7417 (18) 172 (2)
O1W—H1WB⋯S2iii 0.88 (3) 2.55 (3) 3.4146 (16) 168 (2)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Much interest at present is focused on the deliberate construction of transition metal ions and organic molecules by self-assembly of the component metal complexes. These solid materials are attractive to chemists not only for the variety of topologies and intriguing frameworks, but also for their interesting properties either by strong metal-ligand bonding or by weaker bonding forces such as hydrogen bonding and ππ interactions (Guo et al., 2002; Kumar et al., 2007; Venkateswaran et al., 2007; Chi et al., 2008). Among the ligands, hexamethylenetetramine (hmt), as a potential tetradentate ligand or hydrogen bonds acceptor, seems quite suitable in self-assembly systems. Several groups have reported that Co(II), Cd(II), Mn(II) or Ni(II) complexes with hmt and SCN - as ligands form two-dimensional or three-dimensional networks (Liu et al., 2006; Zhang et al., 1999; Meng et al., 2001; Li et al., 2002; Banerjee et al., 2007; Li et al., 2007).

Herein, we present a new hmt complex, (I), based on CoII, with SCN - as ligand (Fig. 1). The title complex, which contains one cobalt center, one hmt, two NCS-, two coordinated methanol molecules and one coordinated water molecule, forms a mononuclear complex. The CoII ion is surrounded by three N atoms and three O atoms (two N atoms from two isothiocyanates, one N atom from hmt, one O atom from coordinated water molecule and two O atoms from two methanol molecules) to attain a distorted octahedral coordination geometry. Moreover, the O atoms of both methanol molecules are each mutually trans to each other. Intramolecular C—H···N and C—H···O hydrogen bonds (Table 2) are important factors in the stabilization of the molecule.

In the crystal structure, molecules interact with each other, forming a three-dimensional supramolecular network through multiform intermolecular hydrogen bonds (Fig. 2 and Table 2). The O2 and O1w atoms form two O—H···N hydrogen bonds with N4 and N6 atoms of the adjacent hmt ligand, respectively. In addition, O1w—H···S2 hydrogen bond is also found in the solid state.

Related literature top

For information on the self-assembly of transition-metal complexes, see: Guo et al. (2002); Kumar et al. (2007); Venkateswaran et al. (2007); Chi et al. (2008). For complexes including hexamethylenetetramine (hmt) as ligand, see: Liu et al. (2006); Zhang et al. (1999); Meng et al. (2001); Li et al. (2002, 2007); Banerjee et al. (2007).

Experimental top

All chemicals were of reagent grade quality obtained from commercial sources and used without further purification. Hexamethylenetetramine (0.50 mmol, 0.07 g), KSCN (1 mmol, 0.10 g) and Co(NO3)2.6H2O (0.50 mmol, 0.15 g) were mixed in methanol (25 ml).The resulting purple solution was left for few weeks at room temperature to afford purple crystals (yield 65%). Anal. Calcd. for [Co(hmt)(SCN)2(CH3OH)2(H2O)]: C 30.23, H 5.58, N 21.15%. Found: C 30.21, H 5.59, N 21.16%. IR (KBr pellet, cm -1): 3398 (m), 2951 (m), 2877 (m), 2079 (vs), 1666 (m), 1462 (s), 1379 (s), 1241 (s), 1010 (s), 814 (m), 687 (s), 516 (m), 480 (m).

Refinement top

H atoms bonded to O atoms of CH3OH and H2O molecules were found in a difference map and refined freely. Other H atoms (hmt ligand) were generated geometrically and refined using a riding model: C—H = 0.97 Å, Uiso(H) = 1.2 Ueq(carrier C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, with displacement ellipsoids drawn at the 50% probability level. The hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Perspective view of the three-dimensional network, showing the intermolecular hydrogen bonds (dashed solid lines) interactions.
Aqua(hexamethylenetetramine-κN)bis(methanol-κO)bis(thiocyanato-κN)cobalt(II) top
Crystal data top
[Co(NCS)2(C6H12N4)(CH4O)2(H2O)]F(000) = 1656
Mr = 397.39Dx = 1.523 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7990 reflections
a = 14.1128 (8) Åθ = 2.3–28.3°
b = 15.3684 (9) ŵ = 1.25 mm1
c = 15.9839 (9) ÅT = 296 K
V = 3466.8 (3) Å3Block, purple
Z = 80.30 × 0.30 × 0.25 mm
Data collection top
Bruker APEXII
diffractometer
4287 independent reflections
Radiation source: sealed tube3528 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1418
Tmin = 0.691, Tmax = 0.730k = 1920
20785 measured reflectionsl = 1821
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0359P)2 + 1.3724P]
where P = (Fo2 + 2Fc2)/3
4287 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Co(NCS)2(C6H12N4)(CH4O)2(H2O)]V = 3466.8 (3) Å3
Mr = 397.39Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.1128 (8) ŵ = 1.25 mm1
b = 15.3684 (9) ÅT = 296 K
c = 15.9839 (9) Å0.30 × 0.30 × 0.25 mm
Data collection top
Bruker APEXII
diffractometer
4287 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3528 reflections with I > 2σ(I)
Tmin = 0.691, Tmax = 0.730Rint = 0.022
20785 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.64 e Å3
4287 reflectionsΔρmin = 0.62 e Å3
217 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.553065 (15)1.038335 (14)0.283547 (14)0.02795 (7)
N10.65439 (11)0.97495 (10)0.35331 (10)0.0373 (3)
C10.71280 (12)0.94096 (11)0.39145 (11)0.0309 (3)
S10.79561 (4)0.89311 (4)0.44512 (4)0.05772 (17)
N20.45742 (11)1.10745 (11)0.21469 (10)0.0412 (4)
C20.40515 (12)1.14790 (11)0.17538 (10)0.0318 (3)
S20.33147 (4)1.20788 (3)0.12175 (3)0.04690 (13)
N30.43978 (9)0.94296 (9)0.32720 (8)0.0262 (3)
N40.27067 (9)0.91344 (9)0.34713 (9)0.0310 (3)
N50.38399 (10)0.86701 (9)0.45350 (9)0.0329 (3)
N60.37919 (10)0.79376 (9)0.31828 (9)0.0320 (3)
C30.34122 (11)0.97472 (10)0.31390 (11)0.0295 (3)
H3A0.33361.03060.34120.035*
H3B0.33040.98290.25450.035*
C40.45227 (12)0.92901 (11)0.41871 (10)0.0311 (3)
H4A0.51590.90780.42910.037*
H4B0.44550.98430.44730.037*
C50.44845 (11)0.85686 (11)0.28545 (10)0.0301 (3)
H5A0.43870.86390.22580.036*
H5B0.51200.83440.29390.036*
C60.28784 (12)0.90063 (12)0.43761 (10)0.0359 (4)
H6A0.27980.95560.46650.043*
H6B0.24160.86000.45970.043*
C70.28332 (12)0.82913 (11)0.30472 (11)0.0341 (4)
H7A0.27260.83640.24520.041*
H7B0.23680.78810.32570.041*
C80.39459 (13)0.78357 (11)0.40908 (11)0.0355 (4)
H8A0.34930.74200.43120.043*
H8B0.45770.76070.41880.043*
O10.52358 (11)1.12213 (8)0.39015 (8)0.0416 (3)
H10.5632 (16)1.1230 (15)0.4256 (16)0.054 (7)*
C90.4697 (2)1.19973 (17)0.39250 (16)0.0775 (9)
H9A0.43011.19960.44130.116*
H9D0.43081.20330.34330.116*
H9B0.51161.24890.39450.116*
O20.58559 (9)0.95999 (9)0.17962 (8)0.0368 (3)
H20.6396 (16)0.9493 (13)0.1762 (13)0.039 (6)*
C100.54971 (15)0.97087 (17)0.09672 (13)0.0556 (6)
H10D0.57000.92300.06250.083*
H10A0.57331.02430.07370.083*
H10B0.48170.97260.09830.083*
O1W0.66088 (11)1.12763 (9)0.24788 (10)0.0439 (3)
H1WA0.6425 (17)1.1713 (16)0.2319 (16)0.054 (7)*
H1WB0.7014 (18)1.1426 (16)0.2873 (16)0.063 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02528 (12)0.02913 (12)0.02945 (12)0.00166 (8)0.00442 (8)0.00671 (8)
N10.0328 (8)0.0382 (8)0.0408 (8)0.0019 (6)0.0058 (6)0.0072 (6)
C10.0299 (8)0.0296 (8)0.0333 (8)0.0020 (6)0.0040 (7)0.0008 (6)
S10.0564 (3)0.0461 (3)0.0707 (4)0.0114 (2)0.0366 (3)0.0015 (3)
N20.0362 (8)0.0436 (9)0.0437 (9)0.0042 (7)0.0059 (7)0.0111 (7)
C20.0306 (8)0.0336 (8)0.0314 (8)0.0002 (7)0.0020 (7)0.0022 (7)
S20.0437 (3)0.0503 (3)0.0468 (3)0.0126 (2)0.0123 (2)0.0089 (2)
N30.0253 (6)0.0283 (7)0.0251 (6)0.0001 (5)0.0025 (5)0.0014 (5)
N40.0265 (7)0.0330 (7)0.0336 (7)0.0002 (5)0.0006 (6)0.0010 (6)
N50.0338 (7)0.0373 (8)0.0277 (7)0.0022 (6)0.0008 (6)0.0043 (6)
N60.0356 (7)0.0268 (7)0.0336 (7)0.0008 (6)0.0021 (6)0.0015 (6)
C30.0284 (8)0.0286 (8)0.0314 (8)0.0024 (6)0.0020 (6)0.0011 (6)
C40.0327 (9)0.0363 (9)0.0243 (7)0.0034 (7)0.0044 (6)0.0020 (6)
C50.0307 (8)0.0299 (8)0.0297 (8)0.0017 (6)0.0031 (6)0.0018 (6)
C60.0335 (9)0.0435 (10)0.0308 (8)0.0009 (7)0.0065 (7)0.0010 (7)
C70.0314 (9)0.0346 (9)0.0364 (9)0.0058 (7)0.0025 (7)0.0032 (7)
C80.0379 (9)0.0310 (8)0.0377 (9)0.0003 (7)0.0013 (7)0.0075 (7)
O10.0519 (8)0.0371 (7)0.0358 (7)0.0080 (6)0.0109 (6)0.0021 (5)
C90.116 (2)0.0597 (15)0.0565 (15)0.0428 (15)0.0207 (15)0.0112 (12)
O20.0253 (6)0.0531 (8)0.0319 (6)0.0018 (5)0.0003 (5)0.0017 (5)
C100.0418 (12)0.0907 (18)0.0343 (10)0.0045 (11)0.0045 (8)0.0006 (10)
O1W0.0411 (8)0.0344 (7)0.0562 (9)0.0044 (6)0.0076 (7)0.0132 (7)
Geometric parameters (Å, º) top
Co1—N22.0400 (15)C3—H3B0.9700
Co1—N12.0585 (15)C4—H4A0.9700
Co1—O22.1024 (13)C4—H4B0.9700
Co1—O1W2.1268 (14)C5—H5A0.9700
Co1—O12.1760 (13)C5—H5B0.9700
Co1—N32.2785 (13)C6—H6A0.9700
N1—C11.151 (2)C6—H6B0.9700
C1—S11.6256 (17)C7—H7A0.9700
N2—C21.151 (2)C7—H7B0.9700
C2—S21.6327 (17)C8—H8A0.9700
N3—C51.487 (2)C8—H8B0.9700
N3—C41.489 (2)O1—C91.415 (2)
N3—C31.489 (2)O1—H10.80 (2)
N4—C31.470 (2)C9—H9A0.9600
N4—C71.473 (2)C9—H9D0.9600
N4—C61.480 (2)C9—H9B0.9600
N5—C41.465 (2)O2—C101.428 (2)
N5—C81.473 (2)O2—H20.78 (2)
N5—C61.474 (2)C10—H10D0.9600
N6—C51.473 (2)C10—H10A0.9600
N6—C71.474 (2)C10—H10B0.9600
N6—C81.476 (2)O1W—H1WA0.76 (3)
C3—H3A0.9700O1W—H1WB0.88 (3)
N2—Co1—N1176.69 (6)N6—C5—N3111.79 (12)
N2—Co1—O290.94 (6)N6—C5—H5A109.3
N1—Co1—O290.31 (6)N3—C5—H5A109.3
N2—Co1—O1W89.59 (6)N6—C5—H5B109.3
N1—Co1—O1W87.34 (6)N3—C5—H5B109.3
O2—Co1—O1W90.09 (6)H5A—C5—H5B107.9
N2—Co1—O189.30 (6)N5—C6—N4111.46 (13)
N1—Co1—O189.35 (6)N5—C6—H6A109.3
O2—Co1—O1178.06 (6)N4—C6—H6A109.3
O1W—Co1—O187.99 (6)N5—C6—H6B109.3
N2—Co1—N392.06 (6)N4—C6—H6B109.3
N1—Co1—N390.98 (5)H6A—C6—H6B108.0
O2—Co1—N391.53 (5)N4—C7—N6111.58 (13)
O1W—Co1—N3177.67 (6)N4—C7—H7A109.3
O1—Co1—N390.39 (5)N6—C7—H7A109.3
C1—N1—Co1178.20 (15)N4—C7—H7B109.3
N1—C1—S1179.8 (2)N6—C7—H7B109.3
C2—N2—Co1178.33 (16)H7A—C7—H7B108.0
N2—C2—S2178.14 (17)N5—C8—N6111.51 (13)
C5—N3—C4107.64 (13)N5—C8—H8A109.3
C5—N3—C3107.72 (12)N6—C8—H8A109.3
C4—N3—C3107.34 (12)N5—C8—H8B109.3
C5—N3—Co1112.16 (9)N6—C8—H8B109.3
C4—N3—Co1108.08 (9)H8A—C8—H8B108.0
C3—N3—Co1113.63 (9)C9—O1—Co1128.49 (13)
C3—N4—C7108.37 (13)C9—O1—H1110.2 (17)
C3—N4—C6109.12 (13)Co1—O1—H1115.6 (17)
C7—N4—C6108.23 (13)O1—C9—H9A109.5
C4—N5—C8108.45 (13)O1—C9—H9D109.5
C4—N5—C6108.18 (13)H9A—C9—H9D109.5
C8—N5—C6108.39 (14)O1—C9—H9B109.5
C5—N6—C7108.29 (13)H9A—C9—H9B109.5
C5—N6—C8108.81 (13)H9D—C9—H9B109.5
C7—N6—C8108.60 (13)C10—O2—Co1126.06 (13)
N4—C3—N3111.79 (12)C10—O2—H2107.8 (16)
N4—C3—H3A109.3Co1—O2—H2112.9 (16)
N3—C3—H3A109.3O2—C10—H10D109.5
N4—C3—H3B109.3O2—C10—H10A109.5
N3—C3—H3B109.3H10D—C10—H10A109.5
H3A—C3—H3B107.9O2—C10—H10B109.5
N5—C4—N3112.87 (13)H10D—C10—H10B109.5
N5—C4—H4A109.0H10A—C10—H10B109.5
N3—C4—H4A109.0Co1—O1W—H1WA114.4 (19)
N5—C4—H4B109.0Co1—O1W—H1WB116.1 (16)
N3—C4—H4B109.0H1WA—O1W—H1WB103 (2)
H4A—C4—H4B107.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···N10.972.523.119 (2)120
C4—H4B···O10.972.563.167 (2)121
C9—H9D···N20.962.563.181 (3)123
O1—H1···N5i0.80 (2)2.08 (3)2.824 (2)156 (2)
O1W—H1WA···N6ii0.76 (2)2.07 (2)2.821 (2)168 (3)
O2—H2···N4iii0.78 (2)1.97 (2)2.7417 (18)172 (2)
O1W—H1WB···S2iii0.88 (3)2.55 (3)3.4146 (16)168 (2)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(NCS)2(C6H12N4)(CH4O)2(H2O)]
Mr397.39
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)14.1128 (8), 15.3684 (9), 15.9839 (9)
V3)3466.8 (3)
Z8
Radiation typeMo Kα
µ (mm1)1.25
Crystal size (mm)0.30 × 0.30 × 0.25
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.691, 0.730
No. of measured, independent and
observed [I > 2σ(I)] reflections
20785, 4287, 3528
Rint0.022
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.075, 1.05
No. of reflections4287
No. of parameters217
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.64, 0.62

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Co1—N22.0400 (15)Co1—O1W2.1268 (14)
Co1—N12.0585 (15)Co1—O12.1760 (13)
Co1—O22.1024 (13)Co1—N32.2785 (13)
N2—Co1—N1176.69 (6)O2—Co1—O1178.06 (6)
N2—Co1—O290.94 (6)O1W—Co1—O187.99 (6)
N1—Co1—O290.31 (6)N2—Co1—N392.06 (6)
N2—Co1—O1W89.59 (6)N1—Co1—N390.98 (5)
N1—Co1—O1W87.34 (6)O2—Co1—N391.53 (5)
O2—Co1—O1W90.09 (6)O1W—Co1—N3177.67 (6)
N2—Co1—O189.30 (6)O1—Co1—N390.39 (5)
N1—Co1—O189.35 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···N10.97002.52003.119 (2)120.00
C4—H4B···O10.97002.56003.167 (2)121.00
C9—H9D···N20.96002.56003.181 (3)123.00
O1—H1···N5i0.80 (2)2.08 (3)2.824 (2)156 (2)
O1W—H1WA···N6ii0.76 (2)2.07 (2)2.821 (2)168 (3)
O2—H2···N4iii0.78 (2)1.97 (2)2.7417 (18)172 (2)
O1W—H1WB···S2iii0.88 (3)2.55 (3)3.4146 (16)168 (2)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x+1/2, y, z+1/2.
 

Acknowledgements

We are grateful for financial support from the Natural Science Foundation of Henan Province and the Education Department of Henan Province.

References

First citationBanerjee, S., Choudhury, A. R., Guru Row, T. N., Chaudhuri, S. & Ghosh, A. (2007). Polyhedron, 26, 24–32.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChi, Y.-N., Cui, F.-Y., Xu, Y.-Q. & Hu, C.-W. (2008). J. Mol. Struct. 875, 42–49.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuo, D., Duan, C.-Y., Fang, C.-J. & Meng, Q.-J. (2002). Dalton Trans. pp. 834–836.  Google Scholar
First citationKumar, D. K., Das, A. & Dastidar, P. (2007). Cryst. Growth Des. 7, 205–207.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X.-L., Niu, D.-Z. & Lu, Z.-S. (2007). Acta Cryst. E63, m2478.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, G., Zhu, Y., Li, L. K., Hou, H. W., Fan, Y. & Du, C. X. (2002). Chin. J. Inorg. Chem. 18, 537–540.  CAS Google Scholar
First citationLiu, Q., Xu, Z. & Yu, K. B. (2006). Chin. J. Inorg. Chem. 22, 1095–1098.  Google Scholar
First citationMeng, X. R., Li, L., Song, Y. L., Zhu, Y., Du, C. X., Fan, Y. T. & Hou, H. W. (2001). Acta Chim. Sinica, 59, 1277–1282.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenkateswaran, R., Balakrishna, M. S., Mobin, S. M. & Tuononen, H. M. (2007). Inorg. Chem. 46, 6535–6541.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, Y., Li, J., Xu, H., Hou, H., Nishiura, M. & Imamoto, T. (1999). J. Mol. Struct. 510, 191–196.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1184-m1185
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds