organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-[(5-Methyl-2-fur­yl)methyl­ene­amino]benzene­sulfonic acid

aDepartment of Chemistry, Baoji University of Arts and Science, Baoji, Shaanxi 721007, People's Republic of China
*Correspondence e-mail: suojn@yahoo.com.cn

(Received 2 August 2008; accepted 14 August 2008; online 20 August 2008)

The title compound, C12H11NO4S, is a Schiff base derived from the condensation reaction of equimolar quanti­ties of sulfamide and furfural. The mol­ecule has a trans configuration with respect to the imine C=N double bond. The N atom is involved in an inter­molecular O—H—N hydrogen bond.

Related literature

For related literature, see: Abd El Rehim et al. (2001[Abd El Rehim, S. S., Ibrahim, M. A. M. & Khalid, K. F. (2001). Mater. Chem. Phys. 70, 268-273.]); Hariharan & Urbach (1969[Hariharan, M. & Urbach, F. L. (1969). Inorg. Chem. 8, 556-559.]); Koning & Canti­lena (1994[Koning, P. K. & Cantilena, L. (1994). Ann. Intern. Med. 154, 590-591.]); Tarafder et al. (2002[Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2002). Polyhedron, 21, 2547-2554.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11NO4S

  • Mr = 265.28

  • Monoclinic, P 21 /c

  • a = 13.9761 (11) Å

  • b = 11.9820 (15) Å

  • c = 7.3266 (10) Å

  • β = 95.8010 (10)°

  • V = 1220.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 298 (2) K

  • 0.23 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.940, Tmax = 0.961

  • 6042 measured reflections

  • 2156 independent reflections

  • 1581 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.128

  • S = 1.05

  • 2156 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 2.21 3.025 (3) 176
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In the past decade, Schiff base compounds have been of great interest. These compounds play an important role in the development of coordination chemistry. Some of the complexes derived from Schiff bases have been found to the complexes with pharmacological and antitumor properties (Abd El Rehim et al., 2001; Koning & Cantilena, 1994; Tarafder et al., 2002). As an extension of the work on the structural characterization of Schiff base compounds, the crystal structure of the title compound, (I), is reported here.

The title compound (I) is an sulfamide derivative. The molecular structure is shown in Fig.1. All bond lengths and bond angles are in the normal ranges and comparable to those observed in a similar sulfamide Schiff base (Hariharan & Urbach 1969). The dihedral angle between the benzene ring and the furfural system is 31.9 (6)°. The torsion angles of N1—C4—C5—C6 and N1—C7—C8—C9 are 178.8 (2) ° and -174.2 (3) °, respectively. The molecular structure adopts a trans configuration about the C7 N1 bond. Table 1 shows hydrogen-bond geometry and a packing diagram is shown in Fig.2.

Related literature top

For related literature, see: Abd El Rehim, Ibrahim & Khalid (2001); Hariharan & Urbach (1969); Koning & Cantilena (1994); Tarafder et al. (2002).

Experimental top

Sulfamide (0.1 mmol, 17.2 mg) and furfural(0.1 mmol, 9.6 mg) were dissolved in methanol (10 ml). The mixture was stirred for 30 min at room temperature to give a clear brown solution. After allowing the resulting solution to stand in air for 7 d, brown flake-shaped crystals of (I) were formed on slow evaporation of the solvent. The crystals were collected, washed with methanol and dried in a vacuum desiccator using anhydrous CaCl2 (yield 54%). Analysis found: C 54.28%, H 4.15% calculated for C12H11NO4S: C 54.34%, H 4.15%.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.93–0.96Å and Uiso(H) = 1.2Ueq or 1.5Ueq(C/O)

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound in 30% probability ellipsoids. H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular packing of (I) viewed along the b axis. The dotted lines represent hydrogen bonds. [Symmetry code: (A)-x + 1, y, -z + 1]
(E)-4-[(5-Methyl-2-furyl)methyleneamino]benzenesulfonic acid top
Crystal data top
C12H11NO4SF(000) = 552
Mr = 265.28Dx = 1.444 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.9761 (11) ÅCell parameters from 1942 reflections
b = 11.9820 (15) Åθ = 2.9–26.0°
c = 7.3266 (10) ŵ = 0.27 mm1
β = 95.801 (1)°T = 298 K
V = 1220.6 (2) Å3Flake, brown
Z = 40.23 × 0.20 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2156 independent reflections
Radiation source: fine-focus sealed tube1581 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1416
Tmin = 0.940, Tmax = 0.961k = 149
6042 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0528P)2 + 1.108P]
where P = (Fo2 + 2Fc2)/3
2156 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C12H11NO4SV = 1220.6 (2) Å3
Mr = 265.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.9761 (11) ŵ = 0.27 mm1
b = 11.9820 (15) ÅT = 298 K
c = 7.3266 (10) Å0.23 × 0.20 × 0.15 mm
β = 95.801 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2156 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1581 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.961Rint = 0.028
6042 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.05Δρmax = 0.44 e Å3
2156 reflectionsΔρmin = 0.44 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.70555 (16)0.62949 (19)0.4602 (3)0.0366 (6)
O10.22901 (17)0.5894 (2)0.3632 (3)0.0621 (7)
H10.24370.52890.41030.093*
O20.27564 (15)0.5149 (2)0.0717 (3)0.0596 (7)
O30.26181 (15)0.71745 (19)0.1207 (3)0.0581 (7)
O40.90263 (14)0.64516 (16)0.5898 (3)0.0409 (5)
S10.28904 (5)0.60909 (6)0.18999 (10)0.0392 (2)
C10.41271 (19)0.6154 (2)0.2690 (3)0.0323 (6)
C20.4477 (2)0.7072 (2)0.3712 (4)0.0379 (7)
H20.40620.76480.39570.045*
C30.5434 (2)0.7130 (2)0.4362 (4)0.0375 (7)
H30.56610.77360.50730.045*
C40.60639 (19)0.6285 (2)0.3960 (3)0.0321 (6)
C50.5707 (2)0.5367 (2)0.2959 (4)0.0389 (7)
H50.61200.47900.27110.047*
C60.4741 (2)0.5301 (2)0.2326 (4)0.0389 (7)
H60.45080.46830.16560.047*
C70.7498 (2)0.7230 (2)0.4686 (4)0.0381 (7)
H70.71550.78620.42700.046*
C80.8478 (2)0.7368 (2)0.5371 (4)0.0383 (7)
C90.9011 (2)0.8304 (3)0.5670 (4)0.0472 (8)
H90.88090.90330.54240.057*
C100.9932 (2)0.7963 (3)0.6424 (4)0.0476 (8)
H101.04520.84260.67810.057*
C110.9918 (2)0.6844 (3)0.6528 (4)0.0425 (7)
C121.0641 (2)0.5993 (3)0.7175 (5)0.0583 (9)
H12A1.12320.63550.76160.087*
H12B1.07500.55050.61790.087*
H12C1.04090.55680.81490.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0333 (13)0.0386 (14)0.0368 (13)0.0029 (10)0.0015 (10)0.0024 (10)
O10.0497 (14)0.0632 (16)0.0740 (17)0.0002 (12)0.0089 (13)0.0110 (13)
O20.0425 (13)0.0767 (17)0.0577 (14)0.0077 (11)0.0044 (11)0.0265 (12)
O30.0416 (12)0.0638 (15)0.0671 (16)0.0026 (11)0.0034 (11)0.0290 (12)
O40.0364 (11)0.0362 (11)0.0490 (12)0.0018 (8)0.0017 (9)0.0015 (9)
S10.0308 (4)0.0463 (5)0.0393 (4)0.0031 (3)0.0026 (3)0.0019 (3)
C10.0306 (14)0.0370 (15)0.0288 (14)0.0035 (12)0.0009 (11)0.0023 (12)
C20.0352 (15)0.0367 (16)0.0418 (16)0.0035 (12)0.0041 (13)0.0049 (13)
C30.0384 (16)0.0369 (16)0.0362 (15)0.0046 (12)0.0003 (13)0.0077 (12)
C40.0321 (14)0.0342 (15)0.0293 (14)0.0023 (11)0.0008 (11)0.0039 (11)
C50.0334 (15)0.0353 (16)0.0476 (17)0.0026 (12)0.0017 (13)0.0045 (13)
C60.0380 (16)0.0345 (16)0.0433 (17)0.0046 (12)0.0003 (13)0.0075 (13)
C70.0354 (15)0.0371 (16)0.0406 (16)0.0012 (13)0.0013 (13)0.0033 (13)
C80.0375 (16)0.0371 (16)0.0394 (16)0.0013 (12)0.0012 (13)0.0025 (13)
C90.0441 (18)0.0349 (17)0.060 (2)0.0035 (14)0.0054 (15)0.0040 (15)
C100.0363 (17)0.0469 (19)0.057 (2)0.0104 (14)0.0080 (15)0.0009 (15)
C110.0327 (16)0.0493 (19)0.0443 (17)0.0026 (13)0.0020 (13)0.0005 (14)
C120.0444 (19)0.057 (2)0.072 (2)0.0109 (16)0.0017 (17)0.0028 (18)
Geometric parameters (Å, º) top
N1—C71.278 (3)C4—C51.386 (4)
N1—C41.418 (3)C5—C61.385 (4)
O1—S11.608 (2)C5—H50.9300
O1—H10.8200C6—H60.9300
O2—S11.424 (2)C7—C81.420 (4)
O3—S11.431 (2)C7—H70.9300
O4—C111.368 (3)C8—C91.352 (4)
O4—C81.372 (3)C9—C101.409 (4)
S1—C11.768 (3)C9—H90.9300
C1—C61.377 (4)C10—C111.344 (4)
C1—C21.392 (4)C10—H100.9300
C2—C31.375 (4)C11—C121.478 (4)
C2—H20.9300C12—H12A0.9600
C3—C41.394 (4)C12—H12B0.9600
C3—H30.9300C12—H12C0.9600
C7—N1—C4118.4 (2)C1—C6—C5119.9 (3)
S1—O1—H1109.5C1—C6—H6120.0
C11—O4—C8106.5 (2)C5—C6—H6120.0
O2—S1—O3119.29 (15)N1—C7—C8124.3 (3)
O2—S1—O1108.48 (14)N1—C7—H7117.8
O3—S1—O1105.76 (13)C8—C7—H7117.8
O2—S1—C1107.28 (13)C9—C8—O4109.6 (2)
O3—S1—C1107.07 (13)C9—C8—C7130.5 (3)
O1—S1—C1108.60 (13)O4—C8—C7119.9 (2)
C6—C1—C2119.9 (3)C8—C9—C10106.9 (3)
C6—C1—S1120.9 (2)C8—C9—H9126.6
C2—C1—S1119.2 (2)C10—C9—H9126.6
C3—C2—C1120.2 (3)C11—C10—C9107.1 (3)
C3—C2—H2119.9C11—C10—H10126.5
C1—C2—H2119.9C9—C10—H10126.5
C2—C3—C4120.2 (3)C10—C11—O4110.0 (3)
C2—C3—H3119.9C10—C11—C12133.9 (3)
C4—C3—H3119.9O4—C11—C12116.1 (3)
C5—C4—C3119.2 (3)C11—C12—H12A109.5
C5—C4—N1118.0 (2)C11—C12—H12B109.5
C3—C4—N1122.8 (2)H12A—C12—H12B109.5
C6—C5—C4120.6 (3)C11—C12—H12C109.5
C6—C5—H5119.7H12A—C12—H12C109.5
C4—C5—H5119.7H12B—C12—H12C109.5
O2—S1—C1—C68.0 (3)C2—C1—C6—C50.8 (4)
O3—S1—C1—C6137.2 (2)S1—C1—C6—C5179.9 (2)
O1—S1—C1—C6109.0 (2)C4—C5—C6—C10.0 (4)
O2—S1—C1—C2172.8 (2)C4—N1—C7—C8177.3 (3)
O3—S1—C1—C243.7 (3)C11—O4—C8—C90.2 (3)
O1—S1—C1—C270.1 (2)C11—O4—C8—C7178.6 (3)
C6—C1—C2—C30.1 (4)N1—C7—C8—C9174.2 (3)
S1—C1—C2—C3179.1 (2)N1—C7—C8—O43.8 (4)
C1—C2—C3—C41.7 (4)O4—C8—C9—C100.3 (4)
C2—C3—C4—C52.4 (4)C7—C8—C9—C10177.9 (3)
C2—C3—C4—N1179.6 (2)C8—C9—C10—C110.6 (4)
C7—N1—C4—C5146.0 (3)C9—C10—C11—O40.8 (4)
C7—N1—C4—C336.9 (4)C9—C10—C11—C12179.8 (4)
C3—C4—C5—C61.6 (4)C8—O4—C11—C100.7 (3)
N1—C4—C5—C6178.8 (2)C8—O4—C11—C12179.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.213.025 (3)176
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H11NO4S
Mr265.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)13.9761 (11), 11.9820 (15), 7.3266 (10)
β (°) 95.801 (1)
V3)1220.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.23 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.940, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
6042, 2156, 1581
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.128, 1.05
No. of reflections2156
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.44

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.213.025 (3)175.8
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The author acknowledges a research grant (No. 08JZ07) from the Phytochemistry Key Laboratory of Shaanxi province.

References

First citationAbd El Rehim, S. S., Ibrahim, M. A. M. & Khalid, K. F. (2001). Mater. Chem. Phys. 70, 268–273.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHariharan, M. & Urbach, F. L. (1969). Inorg. Chem. 8, 556–559.  CrossRef CAS Web of Science Google Scholar
First citationKoning, P. K. & Cantilena, L. (1994). Ann. Intern. Med. 154, 590–591.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2002). Polyhedron, 21, 2547–2554.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds