metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris[μ-2,2′-(azinodi­methyl­idyne)diphenolato-κ4O,N:N′,O′]diiron(III) tetra­hydro­furan tetra­solvate

aInstitute of Molecular Science, Chemical Biology and Molecular Engineering Laboratory of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
*Correspondence e-mail: yangbs@sxu.edu.cn

(Received 22 July 2008; accepted 26 August 2008; online 30 August 2008)

In the title binuclear iron(III) complex, [Fe2(C14H10N2O2)3]·4C4H8O or [Fe2(salda)3]·4THF [H2salda = 2,2′-(azinidimethyl­ene)diphenolate and THF is tetra­hydro­furan], the ligand possesses a rotationally flexible single N—N bond. Three dinucleating O,N:N′,O′-donor ligands provide three diazine (=N—N=) bridges between the metal ions, yielding a binuclear triple helicate structure with crystallographic C2 symmetry, the rotation axis bis­ecting one N—N bond.

Related literature

For related literature, see: Seo et al. (2000[Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J. & Kim, K. (2000). Nature (London), 404, 982-986.]); Gao et al. (2004[Gao, E.-Q., Yue, Y.-F., Bai, S.-Q., He, Z. & Yan, C.-H. (2004). J. Am. Chem. Soc. 126, 1419-1429.]); Oleksi et al. (2006[Oleksi, A., Blanco, A. G., Boer, R., Usön, I., Aymami, J., Rodger, A., Hannon, M. J. & Coll, M. (2006). Angew. Chem. Int. Ed. 45, 1227-1231.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2(C14H10N2O2)3]·4C4H8O

  • Mr = 1114.84

  • Orthorhombic, P b c n

  • a = 15.189 (5) Å

  • b = 19.163 (6) Å

  • c = 18.917 (6) Å

  • V = 5506 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 293 (2) K

  • 0.40 × 0.40 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.798, Tmax = 0.891

  • 21523 measured reflections

  • 4856 independent reflections

  • 3520 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.083

  • wR(F2) = 0.222

  • S = 1.08

  • 4856 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

During recent decades, the study of helical coordination complexes or helicates has become an area of intense research activity, due to their intriguing potential applications in enantioselective synthesis and asymmetric catalysis, designing nonlinear optical materials, magnetic materials and porous materials, probing DNA structures, and understanding helical self-organization processes operative in nature (Seo et al., 2000; Gao et al., 2004; Oleksi et al., 2006). In this paper, we report the synthesis and crystal structure of the title complex [Fe2(salda)3].4THF. Due to the presence of 6 aromatic rings around two Fe(III) ions, the complex displays a large hydrophobic surface and a small diameter (~1.5 nm). These characteristics can be driving forces for the non-covalent recognition of DNA, biological labels and nanoparticle probes by the helicate. The molecular structure of [Fe2(salda)3].4THF is shown in Fig. 1. In the complex, each of the three ligands coordinates the two metal ions via the two phenolate O and the two imine N atoms. Thus, the metal ions are in facial O3N3 coordination environments and are connected by three diaza (N—N) bridges to yield a binuclear triple helicate. The Fe···Fe distance spanned by the triple N—N bridges is 3.9615 (16) Å. The three Fe—N—N—Fe torsion angles are -48.1 (5)° and two symmetry-equivalent at -67.6 (3)°; The complex has C2 symmetry with a 2-fold rotation axis through the midpoints of Fe1···Fe1A and N2—N2A (symmetry code as in Fig. 2). A packing diagram is shown in Fig. 3.

Related literature top

For related literature, see: Seo et al. (2000); Gao et al. (2004); Oleksi et al. (2006).

Experimental top

The ligand H2salda was prepared by reacting hydrazine with 2 equiv of salicylaldehyde followed by recrystallization from methanol. To a solution of 360 mg (1.5 mmol) of H2salda dissolved in 30 ml of methanol was added a solution of 3% (g/100 ml) sodium methoxide in 0.4 ml methanol. FeCl3.H2O (270 mg, 1 mmol) in methanol (15 ml) was added dropwise to the resulting brownish-black solution. The reaction mixture was stirred and refluxed on a water bath for 2 h. The resulting precipitate was filtered off, and washed successively with methanol and THF prior to drying in vacuo. The dried powder was dissolved in THF and crystals suitable for X-ray analysis were obtained after two weeks at room temperature.

Refinement top

The H atoms were treated as riding atoms, with C—H = 0.93–0.97 Å, Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: A, -x, y, 1/2-z.]
[Figure 2] Fig. 2. The coordination environment of the Fe(III) atoms. All non-hydrogen atoms are represented by 30% displacement probability ellipsoids. [Symmetry code: A, -x, y, 1/2-z.]
[Figure 3] Fig. 3. The packing of the title compound.
Tris[µ-2,2'-(azinodimethylidyne)diphenolato-κ4O,N:N',O']diiron(III) tetrahydrofuran tetrasolvate top
Crystal data top
[Fe2(C14H10N2O2)3]·4C4H8ODx = 1.345 Mg m3
Mr = 1114.84Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 30326 reflections
a = 15.189 (5) Åθ = 1.7–25.0°
b = 19.163 (6) ŵ = 0.59 mm1
c = 18.917 (6) ÅT = 293 K
V = 5506 (3) Å3Block, black
Z = 40.40 × 0.40 × 0.20 mm
F(000) = 2336
Data collection top
Bruker SMART CCD
diffractometer
4856 independent reflections
Radiation source: fine-focus sealed tube3520 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1811
Tmin = 0.798, Tmax = 0.891k = 2122
21523 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.083Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.222H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1154P)2 + 5.1454P]
where P = (Fo2 + 2Fc2)/3
4856 reflections(Δ/σ)max < 0.001
343 parametersΔρmax = 0.96 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Fe2(C14H10N2O2)3]·4C4H8OV = 5506 (3) Å3
Mr = 1114.84Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 15.189 (5) ŵ = 0.59 mm1
b = 19.163 (6) ÅT = 293 K
c = 18.917 (6) Å0.40 × 0.40 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
4856 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3520 reflections with I > 2σ(I)
Tmin = 0.798, Tmax = 0.891Rint = 0.080
21523 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0830 restraints
wR(F2) = 0.222H-atom parameters constrained
S = 1.09Δρmax = 0.96 e Å3
4856 reflectionsΔρmin = 0.42 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C220.140 (2)0.6626 (11)0.2989 (14)0.317 (18)
H22A0.13760.69840.26280.380*
H22B0.09970.67570.33640.380*
Fe10.10583 (4)0.30805 (3)0.18882 (3)0.0431 (3)
O20.0996 (2)0.34432 (18)0.09508 (17)0.0530 (9)
O30.2127 (2)0.35565 (19)0.21251 (18)0.0560 (9)
O10.1549 (2)0.21832 (18)0.16629 (19)0.0539 (9)
N20.0242 (2)0.39989 (19)0.21748 (19)0.0423 (9)
N10.0194 (2)0.2536 (2)0.17748 (18)0.0410 (9)
N30.0962 (2)0.2897 (2)0.3007 (2)0.0416 (9)
C70.0316 (3)0.1927 (2)0.1519 (3)0.0478 (11)
H70.08960.17790.14670.057*
C60.0360 (3)0.1452 (2)0.1305 (3)0.0473 (11)
C50.0111 (4)0.0804 (3)0.1022 (3)0.0631 (15)
H50.04850.07040.09750.076*
C40.0709 (4)0.0318 (3)0.0814 (3)0.0728 (17)
H40.05280.01100.06310.087*
C30.1602 (4)0.0479 (3)0.0882 (3)0.0688 (16)
H30.20210.01530.07420.083*
C20.1870 (4)0.1102 (3)0.1147 (3)0.0604 (14)
H20.24690.11970.11760.072*
C10.1264 (3)0.1605 (2)0.1380 (2)0.0461 (11)
C140.0218 (3)0.4552 (3)0.1792 (2)0.0462 (11)
H140.01170.49230.19610.055*
C130.0658 (3)0.4651 (3)0.1129 (2)0.0464 (11)
C120.0676 (4)0.5322 (3)0.0848 (3)0.0568 (13)
H120.04160.56840.11000.068*
C110.1067 (4)0.5466 (3)0.0209 (3)0.0662 (16)
H110.10880.59200.00360.079*
C100.1426 (4)0.4923 (3)0.0169 (3)0.0673 (16)
H100.16850.50130.06050.081*
C90.1413 (4)0.4253 (3)0.0082 (3)0.0619 (14)
H90.16640.38990.01860.074*
C80.1028 (3)0.4088 (3)0.0735 (2)0.0481 (12)
C210.1480 (3)0.3112 (2)0.3498 (2)0.0453 (11)
H210.13290.30080.39630.054*
C200.2278 (3)0.3502 (2)0.3381 (3)0.0484 (12)
C190.2779 (4)0.3683 (3)0.3974 (3)0.0654 (15)
H190.25800.35600.44220.078*
C180.3563 (4)0.4040 (4)0.3904 (4)0.083 (2)
H180.38980.41530.43000.100*
C170.3842 (4)0.4227 (4)0.3237 (4)0.080 (2)
H170.43670.44720.31880.096*
C160.3368 (4)0.4064 (3)0.2649 (3)0.0660 (16)
H160.35770.41960.22060.079*
C150.2565 (3)0.3698 (2)0.2702 (3)0.0490 (12)
C230.2248 (11)0.6588 (9)0.3259 (10)0.250 (13)
H23A0.22410.66610.37660.300*
H23B0.26160.69440.30460.300*
C240.2577 (6)0.5921 (6)0.3100 (5)0.125 (3)
H24A0.27540.56830.35290.149*
H24B0.30840.59570.27900.149*
C250.1866 (5)0.5537 (5)0.2749 (5)0.103 (2)
H25A0.20580.53900.22840.123*
H25B0.17210.51240.30210.123*
C260.0389 (9)0.2553 (8)0.5461 (8)0.195 (6)
H26A0.00130.22260.52120.234*
H26B0.00780.29880.55370.234*
O50.1208 (6)0.2653 (5)0.5114 (4)0.182 (4)
C270.074 (2)0.2259 (13)0.6122 (9)0.319 (16)
H27A0.11070.25810.63820.382*
H27B0.02810.20680.64270.382*
O40.1119 (6)0.5964 (7)0.2687 (6)0.210 (4)
C290.1815 (9)0.2172 (7)0.5369 (8)0.176 (5)
H29A0.22430.23880.56810.212*
H29B0.21180.19310.49890.212*
C280.123 (2)0.1724 (9)0.5741 (11)0.336 (19)
H28A0.15410.14120.60580.403*
H28B0.08600.14560.54240.403*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C220.46 (4)0.135 (14)0.35 (3)0.10 (2)0.18 (3)0.072 (18)
Fe10.0335 (4)0.0488 (4)0.0470 (4)0.0021 (3)0.0011 (3)0.0014 (3)
O20.057 (2)0.057 (2)0.0457 (18)0.0009 (17)0.0023 (16)0.0001 (16)
O30.042 (2)0.070 (2)0.055 (2)0.0128 (17)0.0025 (17)0.0021 (17)
O10.0350 (18)0.054 (2)0.073 (2)0.0036 (16)0.0004 (17)0.0111 (18)
N20.037 (2)0.046 (2)0.044 (2)0.0020 (17)0.0004 (17)0.0001 (17)
N10.031 (2)0.046 (2)0.046 (2)0.0018 (17)0.0020 (16)0.0027 (17)
N30.031 (2)0.045 (2)0.048 (2)0.0015 (16)0.0011 (17)0.0037 (17)
C70.037 (3)0.052 (3)0.055 (3)0.007 (2)0.003 (2)0.004 (2)
C60.044 (3)0.044 (3)0.054 (3)0.003 (2)0.009 (2)0.003 (2)
C50.055 (3)0.051 (3)0.083 (4)0.006 (3)0.012 (3)0.007 (3)
C40.074 (4)0.054 (3)0.091 (4)0.003 (3)0.015 (3)0.018 (3)
C30.065 (4)0.058 (3)0.083 (4)0.013 (3)0.021 (3)0.008 (3)
C20.048 (3)0.057 (3)0.076 (4)0.006 (3)0.010 (3)0.005 (3)
C10.048 (3)0.044 (3)0.047 (3)0.005 (2)0.004 (2)0.004 (2)
C140.041 (3)0.046 (3)0.052 (3)0.003 (2)0.005 (2)0.001 (2)
C130.037 (3)0.055 (3)0.047 (3)0.003 (2)0.003 (2)0.006 (2)
C120.052 (3)0.057 (3)0.061 (3)0.002 (3)0.003 (3)0.010 (3)
C110.061 (4)0.072 (4)0.066 (4)0.010 (3)0.007 (3)0.024 (3)
C100.061 (4)0.092 (5)0.049 (3)0.014 (3)0.000 (3)0.016 (3)
C90.052 (3)0.083 (4)0.050 (3)0.004 (3)0.002 (3)0.002 (3)
C80.036 (3)0.064 (3)0.044 (3)0.005 (2)0.009 (2)0.006 (2)
C210.040 (3)0.054 (3)0.042 (2)0.007 (2)0.001 (2)0.002 (2)
C200.038 (3)0.049 (3)0.058 (3)0.001 (2)0.005 (2)0.009 (2)
C190.049 (3)0.078 (4)0.069 (4)0.001 (3)0.000 (3)0.016 (3)
C180.054 (4)0.115 (5)0.080 (4)0.020 (4)0.015 (3)0.032 (4)
C170.048 (3)0.103 (5)0.090 (5)0.028 (3)0.002 (3)0.023 (4)
C160.044 (3)0.077 (4)0.077 (4)0.020 (3)0.009 (3)0.011 (3)
C150.038 (3)0.050 (3)0.059 (3)0.002 (2)0.000 (2)0.011 (2)
C230.224 (17)0.188 (15)0.34 (2)0.160 (15)0.196 (18)0.177 (16)
C240.085 (6)0.165 (9)0.124 (7)0.052 (6)0.006 (5)0.001 (6)
C250.073 (5)0.115 (6)0.120 (6)0.013 (5)0.002 (5)0.006 (5)
C260.164 (12)0.233 (15)0.187 (13)0.079 (11)0.089 (10)0.075 (11)
O50.163 (7)0.243 (9)0.139 (6)0.081 (7)0.057 (5)0.088 (6)
C270.52 (4)0.32 (3)0.115 (11)0.11 (3)0.108 (18)0.027 (15)
O40.122 (7)0.246 (12)0.264 (12)0.049 (8)0.028 (7)0.002 (10)
C290.148 (11)0.176 (11)0.204 (12)0.071 (10)0.064 (10)0.009 (10)
C280.62 (5)0.151 (14)0.24 (2)0.18 (2)0.12 (3)0.118 (15)
Geometric parameters (Å, º) top
C22—C231.39 (3)C10—C91.368 (8)
C22—O41.46 (3)C10—H100.930
C22—H22A0.970C9—C81.402 (7)
C22—H22B0.970C9—H90.930
Fe1—O21.907 (3)C21—C201.441 (7)
Fe1—O31.916 (3)C21—H210.930
Fe1—O11.922 (3)C20—C191.399 (7)
Fe1—N32.150 (4)C20—C151.406 (7)
Fe1—N12.180 (4)C19—C181.381 (8)
Fe1—N22.220 (4)C19—H190.930
O2—C81.303 (6)C18—C171.378 (9)
O3—C151.306 (6)C18—H180.930
O1—C11.304 (6)C17—C161.362 (8)
N2—C141.285 (6)C17—H170.930
N2—N2i1.433 (7)C16—C151.411 (7)
N1—C71.276 (6)C16—H160.930
N1—N3i1.419 (5)C23—C241.406 (18)
N3—C211.286 (6)C23—H23A0.970
N3—N1i1.419 (5)C23—H23B0.970
C7—C61.430 (7)C24—C251.465 (11)
C7—H70.930C24—H24A0.970
C6—C51.403 (7)C24—H24B0.970
C6—C11.411 (7)C25—O41.403 (12)
C5—C41.360 (8)C25—H25A0.970
C5—H50.930C25—H25B0.970
C4—C31.398 (9)C26—O51.420 (13)
C4—H40.930C26—C271.47 (2)
C3—C21.357 (8)C26—H26A0.970
C3—H30.930C26—H26B0.970
C2—C11.405 (7)O5—C291.389 (12)
C2—H20.930C27—C281.46 (3)
C14—C131.433 (7)C27—H27A0.970
C14—H140.930C27—H27B0.970
C13—C121.393 (7)C29—C281.42 (2)
C13—C81.426 (7)C29—H29A0.970
C12—C111.375 (8)C29—H29B0.970
C12—H120.930C28—H28A0.970
C11—C101.375 (9)C28—H28B0.970
C11—H110.930
C23—C22—O4111.8 (16)C10—C9—H9119.2
C23—C22—H22A109.3C8—C9—H9119.2
O4—C22—H22A109.3O2—C8—C9120.3 (5)
C23—C22—H22B109.3O2—C8—C13122.6 (4)
O4—C22—H22B109.3C9—C8—C13117.0 (5)
H22A—C22—H22B107.9N3—C21—C20124.7 (4)
O2—Fe1—O394.95 (15)N3—C21—H21117.7
O2—Fe1—O198.00 (15)C20—C21—H21117.7
O3—Fe1—O198.58 (15)C19—C20—C15119.9 (5)
O2—Fe1—N3166.26 (15)C19—C20—C21117.5 (5)
O3—Fe1—N384.55 (14)C15—C20—C21122.6 (4)
O1—Fe1—N395.65 (15)C18—C19—C20121.0 (6)
O2—Fe1—N192.27 (14)C18—C19—H19119.5
O3—Fe1—N1172.09 (14)C20—C19—H19119.5
O1—Fe1—N183.57 (14)C17—C18—C19118.8 (6)
N3—Fe1—N187.67 (13)C17—C18—H18120.6
O2—Fe1—N284.86 (14)C19—C18—H18120.6
O3—Fe1—N292.21 (15)C16—C17—C18121.8 (6)
O1—Fe1—N2168.52 (14)C16—C17—H17119.1
N3—Fe1—N281.44 (14)C18—C17—H17119.1
N1—Fe1—N285.21 (14)C17—C16—C15120.8 (6)
C8—O2—Fe1129.4 (3)C17—C16—H16119.6
C15—O3—Fe1136.5 (3)C15—C16—H16119.6
C1—O1—Fe1136.2 (3)O3—C15—C20123.4 (4)
C14—N2—N2i118.0 (3)O3—C15—C16118.9 (5)
C14—N2—Fe1122.2 (3)C20—C15—C16117.8 (5)
N2i—N2—Fe1119.75 (17)C22—C23—C24107.4 (14)
C7—N1—N3i115.9 (4)C22—C23—H23A110.2
C7—N1—Fe1127.0 (3)C24—C23—H23A110.2
N3i—N1—Fe1117.1 (3)C22—C23—H23B110.2
C21—N3—N1i116.7 (4)C24—C23—H23B110.2
C21—N3—Fe1128.2 (3)H23A—C23—H23B108.5
N1i—N3—Fe1115.0 (3)C23—C24—C25106.9 (10)
N1—C7—C6125.8 (5)C23—C24—H24A110.3
N1—C7—H7117.1C25—C24—H24A110.3
C6—C7—H7117.1C23—C24—H24B110.3
C5—C6—C1119.0 (5)C25—C24—H24B110.3
C5—C6—C7118.5 (5)H24A—C24—H24B108.6
C1—C6—C7122.5 (4)O4—C25—C24110.0 (9)
C4—C5—C6122.5 (5)O4—C25—H25A109.7
C4—C5—H5118.7C24—C25—H25A109.7
C6—C5—H5118.7O4—C25—H25B109.7
C5—C4—C3118.0 (5)C24—C25—H25B109.7
C5—C4—H4121.0H25A—C25—H25B108.2
C3—C4—H4121.0O5—C26—C2797.6 (14)
C2—C3—C4121.3 (5)O5—C26—H26A112.2
C2—C3—H3119.3C27—C26—H26A112.2
C4—C3—H3119.3O5—C26—H26B112.2
C3—C2—C1121.6 (5)C27—C26—H26B112.2
C3—C2—H2119.2H26A—C26—H26B109.8
C1—C2—H2119.2C29—O5—C26109.3 (10)
O1—C1—C2119.6 (5)C28—C27—C2691.9 (13)
O1—C1—C6122.8 (4)C28—C27—H27A113.3
C2—C1—C6117.6 (5)C26—C27—H27A113.3
N2—C14—C13126.0 (5)C28—C27—H27B113.3
N2—C14—H14117.0C26—C27—H27B113.3
C13—C14—H14117.0H27A—C27—H27B110.6
C12—C13—C8119.3 (5)C25—O4—C22103.8 (14)
C12—C13—C14117.8 (5)O5—C29—C2899.1 (14)
C8—C13—C14122.8 (4)O5—C29—H29A112.0
C11—C12—C13122.1 (5)C28—C29—H29A112.0
C11—C12—H12119.0O5—C29—H29B112.0
C13—C12—H12119.0C28—C29—H29B112.0
C12—C11—C10118.4 (5)H29A—C29—H29B109.6
C12—C11—H11120.8C29—C28—C2798.2 (14)
C10—C11—H11120.8C29—C28—H28A112.1
C9—C10—C11121.6 (5)C27—C28—H28A112.1
C9—C10—H10119.2C29—C28—H28B112.1
C11—C10—H10119.2C27—C28—H28B112.1
C10—C9—C8121.5 (6)H28A—C28—H28B109.8
O3—Fe1—O2—C852.8 (4)C4—C3—C2—C11.4 (9)
O1—Fe1—O2—C8152.2 (4)Fe1—O1—C1—C2165.2 (4)
N3—Fe1—O2—C834.5 (9)Fe1—O1—C1—C615.9 (7)
N1—Fe1—O2—C8123.9 (4)C3—C2—C1—O1176.7 (5)
N2—Fe1—O2—C839.0 (4)C3—C2—C1—C62.2 (8)
O2—Fe1—O3—C15165.6 (5)C5—C6—C1—O1177.2 (5)
O1—Fe1—O3—C1595.5 (5)C7—C6—C1—O11.5 (7)
N3—Fe1—O3—C150.6 (5)C5—C6—C1—C21.6 (7)
N1—Fe1—O3—C159.8 (14)C7—C6—C1—C2179.7 (5)
N2—Fe1—O3—C1580.6 (5)N2i—N2—C14—C13179.9 (5)
O2—Fe1—O1—C173.9 (5)Fe1—N2—C14—C133.2 (7)
O3—Fe1—O1—C1170.2 (4)N2—C14—C13—C12169.5 (5)
N3—Fe1—O1—C1104.5 (5)N2—C14—C13—C814.1 (8)
N1—Fe1—O1—C117.5 (4)C8—C13—C12—C112.2 (8)
N2—Fe1—O1—C129.8 (10)C14—C13—C12—C11178.7 (5)
O2—Fe1—N2—C1422.5 (4)C13—C12—C11—C101.9 (8)
O3—Fe1—N2—C1472.3 (4)C12—C11—C10—C91.0 (9)
O1—Fe1—N2—C14127.5 (7)C11—C10—C9—C80.3 (9)
N3—Fe1—N2—C14156.4 (4)Fe1—O2—C8—C9147.1 (4)
N1—Fe1—N2—C14115.2 (4)Fe1—O2—C8—C1334.9 (6)
O2—Fe1—N2—N2i160.9 (4)C10—C9—C8—O2177.6 (5)
O3—Fe1—N2—N2i104.4 (4)C10—C9—C8—C130.5 (7)
O1—Fe1—N2—N2i55.8 (9)C12—C13—C8—O2176.6 (4)
N3—Fe1—N2—N2i20.2 (4)C14—C13—C8—O20.3 (7)
N1—Fe1—N2—N2i68.2 (4)C12—C13—C8—C91.4 (7)
O2—Fe1—N1—C786.4 (4)C14—C13—C8—C9177.8 (5)
O3—Fe1—N1—C7117.7 (11)N1i—N3—C21—C20178.5 (4)
O1—Fe1—N1—C711.4 (4)Fe1—N3—C21—C203.4 (7)
N3—Fe1—N1—C7107.4 (4)N3—C21—C20—C19178.6 (5)
N2—Fe1—N1—C7171.0 (4)N3—C21—C20—C151.1 (7)
O2—Fe1—N1—N3i92.2 (3)C15—C20—C19—C181.3 (8)
O3—Fe1—N1—N3i63.7 (12)C21—C20—C19—C18178.3 (5)
O1—Fe1—N1—N3i170.0 (3)C20—C19—C18—C171.0 (10)
N3—Fe1—N1—N3i74.1 (3)C19—C18—C17—C160.5 (11)
N2—Fe1—N1—N3i7.5 (3)C18—C17—C16—C150.4 (11)
O2—Fe1—N3—C2185.7 (7)Fe1—O3—C15—C201.1 (8)
O3—Fe1—N3—C212.8 (4)Fe1—O3—C15—C16178.7 (4)
O1—Fe1—N3—C21100.9 (4)C19—C20—C15—O3179.0 (5)
N1—Fe1—N3—C21175.8 (4)C21—C20—C15—O31.3 (7)
N2—Fe1—N3—C2190.2 (4)C19—C20—C15—C161.2 (7)
O2—Fe1—N3—N1i89.4 (7)C21—C20—C15—C16178.5 (5)
O3—Fe1—N3—N1i177.9 (3)C17—C16—C15—O3179.5 (6)
O1—Fe1—N3—N1i84.0 (3)C17—C16—C15—C200.7 (8)
N1—Fe1—N3—N1i0.7 (3)O4—C22—C23—C244 (2)
N2—Fe1—N3—N1i84.9 (3)C22—C23—C24—C252.9 (19)
N3i—N1—C7—C6176.0 (4)C23—C24—C25—O40.7 (13)
Fe1—N1—C7—C65.4 (7)C27—C26—O5—C2927.3 (18)
N1—C7—C6—C5179.0 (5)O5—C26—C27—C2854 (2)
N1—C7—C6—C12.3 (8)C24—C25—O4—C221.6 (15)
C1—C6—C5—C40.3 (8)C23—C22—O4—C254 (2)
C7—C6—C5—C4179.1 (5)C26—O5—C29—C2812.4 (18)
C6—C5—C4—C30.5 (9)O5—C29—C28—C2748 (2)
C5—C4—C3—C20.0 (9)C26—C27—C28—C2964 (2)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe2(C14H10N2O2)3]·4C4H8O
Mr1114.84
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)15.189 (5), 19.163 (6), 18.917 (6)
V3)5506 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.40 × 0.40 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.798, 0.891
No. of measured, independent and
observed [I > 2σ(I)] reflections
21523, 4856, 3520
Rint0.080
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.083, 0.222, 1.09
No. of reflections4856
No. of parameters343
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.96, 0.42

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant No. 20771068) and the Provincial Natural Science Foundation of Shanxi (grant No. 2007011024) for support of this work.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, E.-Q., Yue, Y.-F., Bai, S.-Q., He, Z. & Yan, C.-H. (2004). J. Am. Chem. Soc. 126, 1419–1429.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOleksi, A., Blanco, A. G., Boer, R., Usön, I., Aymami, J., Rodger, A., Hannon, M. J. & Coll, M. (2006). Angew. Chem. Int. Ed. 45, 1227–1231.  Web of Science CrossRef CAS Google Scholar
First citationSeo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J. & Kim, K. (2000). Nature (London), 404, 982–986.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds