organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Methyl-1-phenyl-1H-1,2,3-triazole-4-carboxylic acid

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: zhaohong@seu.edu.cn

(Received 25 July 2008; accepted 25 August 2008; online 30 August 2008)

The title compound, C10H9N3O2, was synthesized from azido­benzene and ethyl acetyl­acetate. A pair of hydrogen bonds [2.617 (2) Å] inter­connects a pair of the carboxyl groups, forming an R22(8) inversion dimer, a frequent motif in carboxylic acids. In the title structure, the bonding H atom in the aforementioned O—H⋯O hydrogen bond is significantly shifted towards the acceptor O atom [the donor and acceptor O—H distances are 1.25 (4) and 1.38 (4) Å, respectively]. A plot of the O⋯O versus O—H distances in compounds with paired carboxyl groups shows that the title structure belongs to the group of structures with abnormally long O—H distances with regard to the O⋯O contacts. The displacement of the bonding H atom towards the centre of the hydrogen bond is concomitant with more equal C—O bonding distances in the carboxyl group.

Related literature

For related literature, see: El Khadem et al. (1968[El Khadem, H., Mansour, H. A. R. & Meshreki, M. H. (1968). J. Chem. Soc. C, pp. 1329-1331.]); Olesen et al. (2003[Olesen, P. H., Sorensen, A. R., Urso, B., Kurtzhals, P., Bowler, A. N., Ehrbar, U. & Hansen, B. F. (2003). J. Med. Chem. 46, 3333-3341.]); Tian et al. (2005[Tian, L., Sun, Y., Li, H., Zheng, X., Cheng, Y., Liu, X. & Qian, B. (2005). J. Inorg. Biochem. 99, 1646-1652.]); Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Etter et al. (1990[Etter, M. C., MacDonald, J. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Radl et al. (2000[Radl, S., Hezky, P., Konvicka, P. & Krejci, J. (2000). Collect. Czech. Chem. Commun. 65, 1093-1108.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9N3O2

  • Mr = 203.20

  • Monoclinic, C 2/c

  • a = 23.616 (3) Å

  • b = 7.7189 (15) Å

  • c = 12.606 (2) Å

  • β = 113.18 (3)°

  • V = 2112.5 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.965, Tmax = 0.977

  • 10370 measured reflections

  • 2400 independent reflections

  • 1583 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.148

  • S = 1.08

  • 2400 reflections

  • 141 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 1.25 (4) 1.38 (4) 2.617 (2) 173 (3)
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

Many triazole-related molecules have received much attention because of their biological activities (Olesen et al., 2003; Tian et al., 2005). We report herein the crystal structure of the title compound (Fig. 1).

The molecules are arranged into inversion dimers via carboxyl groups that are interconnected by pairs of the O-H···O hydrogen bonds (Fig. 2). The graph-set motif is R22(8) (Etter et al., 1990). The peculiarity of the title structure consists in the displacement of the bonding hydrogen towards the centre of the hydrogen bond (Tab. 1). Though not unprecedented, Fig. 3 shows that the title structure belongs among rather rare examples where in a relatively long O···O hydrogen bond the involved hydrogen is shifted towards the centre. The displacement of the bonding hydrogen towards the centre of the hydrogen bond is concomitant to more equal C-O bonding distances in the carboxyl group.

The dihedral angle between the triazole and phenyl ring planes is 41.85 (1)°.

Related literature top

For related literature, see: El Khadem et al. (1968); Olesen et al. (2003); Tian et al. (2005).

For related literature, see: Allen (2002); Etter et al. (1990); Radl et al. (2000).

Experimental top

The title compound was prepared from azidobenzene according to the reported method (El Khadem et al., 1968). The colourless prisms (average size: 0.5×0.8×1.0 mm) were obtained by slow evaporation from 95% ethanol/water solution at room temperature.

Refinement top

All the hydrogen atoms could have been discerned in the difference electron density map, nevertheless, all the H atoms attached to the carbon atoms were constrained in a riding motion approximation. Caryl—H=0.93 Å, with Uiso(H)=1.2Ueq(C). Cmethyl—H=0.96 Å, with Uiso(H)=1.5Ueq(C). The hydroxyl hydrogen was refined freely.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule, showing the atomic numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title molecules, showing the structure along the b axis.
[Figure 3] Fig. 3. The O-H vs. O···O distances (Å) for the structural motif of the pairs of the carboxyl groups that are interconnected by the hydrogen bonds. The structures were found in the Cambridge Structural Database (Allen, 2002; CSD version 5.29 including the updates from January 25, 2008). The query has been limited for the structures with the R factor <0.05; with no errors, no disorder. The polymers and the powder samples were excluded as well. 1028 hits were found. The title structure is symbolized by the large circle in the left upper corner of the plot.
5-Methyl-1-phenyl-1H-1,2,3-triazole-4-carboxylic acid top
Crystal data top
C10H9N3O2F(000) = 848
Mr = 203.20Dx = 1.278 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2025 reflections
a = 23.616 (3) Åθ = 2.8–27.5°
b = 7.7189 (15) ŵ = 0.09 mm1
c = 12.606 (2) ÅT = 293 K
β = 113.18 (3)°Prism, colourless
V = 2112.5 (8) Å30.20 × 0.18 × 0.15 mm
Z = 8
Data collection top
Rigaku SCXmini
diffractometer
2400 independent reflections
Radiation source: fine-focus sealed tube1583 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 3030
Tmin = 0.965, Tmax = 0.977k = 910
10370 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: difference Fourier map
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.4952P]
where P = (Fo2 + 2Fc2)/3
2400 reflections(Δ/σ)max < 0.001
141 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.18 e Å3
31 constraints
Crystal data top
C10H9N3O2V = 2112.5 (8) Å3
Mr = 203.20Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.616 (3) ŵ = 0.09 mm1
b = 7.7189 (15) ÅT = 293 K
c = 12.606 (2) Å0.20 × 0.18 × 0.15 mm
β = 113.18 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2400 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1583 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.977Rint = 0.053
10370 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.14 e Å3
2400 reflectionsΔρmin = 0.18 e Å3
141 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.41473 (10)0.1278 (3)0.72134 (18)0.0555 (5)
C20.34886 (9)0.1172 (3)0.69727 (16)0.0491 (5)
C30.31868 (9)0.1493 (2)0.76949 (15)0.0461 (5)
C40.20319 (9)0.1379 (2)0.72119 (16)0.0466 (5)
C50.20037 (10)0.0713 (3)0.82132 (17)0.0538 (5)
H50.23500.02180.87800.065*
C60.14517 (11)0.0799 (3)0.8352 (2)0.0655 (6)
H60.14260.03640.90200.079*
C70.09414 (11)0.1525 (3)0.7506 (2)0.0761 (7)
H70.05710.15740.76030.091*
C80.09745 (10)0.2184 (3)0.6509 (2)0.0734 (7)
H80.06260.26660.59400.088*
C90.15210 (9)0.2129 (3)0.63569 (18)0.0578 (5)
H90.15470.25850.56950.069*
C100.34155 (10)0.2068 (3)0.89199 (16)0.0579 (6)
H10A0.30990.27160.90410.087*
H10B0.37730.27860.90910.087*
H10C0.35220.10730.94170.087*
N10.30730 (8)0.0743 (2)0.58988 (14)0.0577 (5)
N20.25230 (8)0.0763 (2)0.59058 (13)0.0571 (5)
N30.25867 (7)0.1228 (2)0.70044 (13)0.0475 (4)
O10.45271 (7)0.1465 (2)0.82345 (13)0.0733 (5)
O20.43008 (7)0.1161 (3)0.63484 (13)0.0799 (6)
H20.4867 (19)0.125 (5)0.661 (3)0.193 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0557 (12)0.0670 (14)0.0444 (12)0.0033 (10)0.0201 (10)0.0024 (10)
C20.0508 (11)0.0572 (12)0.0404 (11)0.0029 (9)0.0190 (9)0.0016 (8)
C30.0505 (11)0.0472 (11)0.0407 (10)0.0013 (8)0.0182 (9)0.0020 (8)
C40.0488 (10)0.0506 (11)0.0416 (11)0.0023 (9)0.0190 (9)0.0050 (8)
C50.0562 (12)0.0617 (13)0.0443 (11)0.0008 (9)0.0206 (10)0.0031 (9)
C60.0660 (14)0.0826 (16)0.0573 (14)0.0081 (12)0.0343 (12)0.0071 (11)
C70.0548 (14)0.102 (2)0.0797 (17)0.0006 (13)0.0350 (14)0.0096 (15)
C80.0528 (13)0.0884 (18)0.0717 (16)0.0117 (12)0.0165 (12)0.0013 (13)
C90.0566 (13)0.0654 (14)0.0481 (12)0.0046 (10)0.0169 (10)0.0026 (10)
C100.0580 (12)0.0714 (15)0.0429 (11)0.0024 (10)0.0184 (10)0.0071 (10)
N10.0544 (10)0.0770 (12)0.0430 (10)0.0019 (9)0.0208 (8)0.0018 (8)
N20.0567 (11)0.0774 (13)0.0381 (9)0.0015 (8)0.0196 (8)0.0064 (8)
N30.0505 (9)0.0554 (10)0.0372 (8)0.0005 (7)0.0178 (7)0.0002 (7)
O10.0532 (9)0.1133 (14)0.0506 (9)0.0020 (8)0.0176 (8)0.0084 (8)
O20.0585 (10)0.1372 (16)0.0504 (9)0.0041 (9)0.0282 (8)0.0032 (9)
Geometric parameters (Å, º) top
C1—O11.254 (2)C6—H60.9300
C1—O21.281 (2)C7—C81.386 (3)
C1—C21.465 (3)C7—H70.9300
C2—N11.364 (3)C8—C91.378 (3)
C2—C31.382 (3)C8—H80.9300
C3—N31.356 (2)C9—H90.9300
C3—C101.489 (3)C10—H10A0.9600
C4—C51.389 (3)C10—H10B0.9600
C4—C91.389 (3)C10—H10C0.9600
C4—N31.438 (2)N1—N21.302 (2)
C5—C61.384 (3)N2—N31.380 (2)
C5—H50.9300O2—H21.25 (4)
C6—C71.376 (3)
O1—C1—O2123.66 (19)C8—C7—H7119.7
O1—C1—C2119.41 (19)C9—C8—C7120.3 (2)
O2—C1—C2116.94 (19)C9—C8—H8119.8
N1—C2—C3109.96 (17)C7—C8—H8119.8
N1—C2—C1120.64 (17)C8—C9—C4118.7 (2)
C3—C2—C1129.38 (19)C8—C9—H9120.7
N3—C3—C2103.29 (16)C4—C9—H9120.7
N3—C3—C10124.88 (17)C3—C10—H10A109.5
C2—C3—C10131.79 (18)C3—C10—H10B109.5
C5—C4—C9121.47 (19)H10A—C10—H10B109.5
C5—C4—N3120.56 (18)C3—C10—H10C109.5
C9—C4—N3117.90 (17)H10A—C10—H10C109.5
C6—C5—C4118.8 (2)H10B—C10—H10C109.5
C6—C5—H5120.6N2—N1—C2108.68 (15)
C4—C5—H5120.6N1—N2—N3107.15 (15)
C7—C6—C5120.2 (2)C3—N3—N2110.92 (15)
C7—C6—H6119.9C3—N3—C4131.92 (16)
C5—C6—H6119.9N2—N3—C4117.15 (15)
C6—C7—C8120.5 (2)C1—O2—H2113.8 (15)
C6—C7—H7119.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i1.25 (4)1.38 (4)2.617 (2)173 (3)
Symmetry code: (i) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC10H9N3O2
Mr203.20
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)23.616 (3), 7.7189 (15), 12.606 (2)
β (°) 113.18 (3)
V3)2112.5 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.965, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
10370, 2400, 1583
Rint0.053
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.148, 1.08
No. of reflections2400
No. of parameters141
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.18

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i1.25 (4)1.38 (4)2.617 (2)173 (3)
Symmetry code: (i) x+1, y, z+3/2.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University to HZ.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEl Khadem, H., Mansour, H. A. R. & Meshreki, M. H. (1968). J. Chem. Soc. C, pp. 1329–1331.  Google Scholar
First citationEtter, M. C., MacDonald, J. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOlesen, P. H., Sorensen, A. R., Urso, B., Kurtzhals, P., Bowler, A. N., Ehrbar, U. & Hansen, B. F. (2003). J. Med. Chem. 46, 3333–3341.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRadl, S., Hezky, P., Konvicka, P. & Krejci, J. (2000). Collect. Czech. Chem. Commun. 65, 1093–1108.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, L., Sun, Y., Li, H., Zheng, X., Cheng, Y., Liu, X. & Qian, B. (2005). J. Inorg. Biochem. 99, 1646–1652.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds