organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Nitro­phenyl methacrylate

aSchool of Science, Beijing Jiaotong University, Beijing 100044, People's Republic of China, and bCollege of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
*Correspondence e-mail: fanqiqu@whu.edu.cn

(Received 11 July 2008; accepted 5 August 2008; online 13 August 2008)

The title compound, C10H9NO4, was obtained serendipitously during the preparation of benzyl cyclo­hexyl­carbamate. The mol­ecule consists of two approximately planar parts, the nitro­phenyl ring and the rest of the non-H atoms, with a dihedral angle of 55.05 (6)° between the two segments. The crystal structure is stabilized by weak C—H⋯O inter­actions and π stacking [3.753 (1) Å] along the b axis.

Related literature

For related literature, see: Banks et al. (1977[Banks, A. R., Fibiger, R. F. & Jones, T. (1977). J. Org. Chem. 42, 3965-3966.]); Hwang et al. (2007[Hwang, J., Li, R. C. & Maynard, H. D. (2007). J. Controlled Release, 122, 279-286.]); Li et al. (2007[Li, R. C., Hwang, J. & Maynard, H. D. (2007). Chem. Commun. 35, 3631-3633.]); Otsu et al. (1968[Otsu, T., Ito, T., Fujii, Y. & Imoto, M. (1968). Bull. Chem. Soc. Jpn, 4, 204-207.]); Tang et al. (2007[Tang, X., Hu, Y. & Pan, C. (2007). Polymer, 48, 6354-6365.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9NO4

  • Mr = 207.18

  • Monoclinic, C 2/c

  • a = 24.491 (6) Å

  • b = 3.753 (1) Å

  • c = 23.428 (6) Å

  • β = 116.98 (1)°

  • V = 1919.0 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 90.0 (2) K

  • 0.30 × 0.10 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.967, Tmax = 0.996

  • 3936 measured reflections

  • 2193 independent reflections

  • 1380 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.145

  • S = 1.04

  • 2193 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.95 2.41 3.130 (2) 133
C1—H1B⋯O4ii 0.95 2.64 3.546 (3) 159
C2—H2A⋯O3ii 0.98 2.68 3.611 (2) 159
C9—H9⋯O4iii 0.95 2.46 3.282 (2) 145
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) -x, -y+2, -z.

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and local procedures.

Supporting information


Comment top

The title compound (I) is an important building block in the preparation of functional block polymers (Tang, et al. 2007; Hwang, et al. 2007; Li, et al. 2007). Although it has been widely used as a monomer in polymerization reactions for a long time (Otsu, et al. 1968), the crystal structure, as far as we know, has never been reported before.

Traditonally, (I) has been synthesized by refluxing methacryloyl chloride and para-nitrophenol (Banks, et al. 1977). Here it was obtained unexpectedly during an attempt to make benzyl cyclohexylcarbamate as described in the experimental section.

The asymmetric unit of (I) (Fig. 1) contains one molecule and bond lengths and angles are within normal ranges. The molecule consists of two approximately planar parts: the nitrophenyl ring and the rest of the non-hydrogen atoms (dihedral angle between the two segments is 55.05 (6)°). The nitro group is nearly coplanar with the phenyl ring as indicated by the torsion angle O3-N1-C8-C7 of -7.48 °. The remaining non-hydrogen atoms are almost coplanar as suggested by the torsion angle C2-C3-C4-O1 at 9.35 °. Since (I) has no classic hydrogen bonding donors, the crystal packng is stabilized by C—H···O interactions (Table 1)in two directions with aromatic C-H atoms as the donors and both oxygen atoms of the nitro group and the carbonyl oxygen as the acceptors. There is also π-stacking along the third direction, the shortest (b), where the aromatic rings are separated by a unit cell translation of 3.753 (1) Å (Fig. 2).

Related literature top

For related literature, see: Banks et al. (1977); Hwang et al. (2007); Li et al. (2007); Otsu et al. (1968); Tang et al. (2007).

Experimental top

4-nitrophenyl cyclohexylcarbamate (0.95 g, 3.5 mmol), phenylmethanol (0.40 g, 3.7 mmol) and triethylamine (0.36 g, 3.6 mmol) were reflxued overnight in 20 ml methylene chloride. The solution was washed with 1 N NaOH, water and brine, and then dried with anhydrous Na2SO4. After removal of the solvent, the product was recovered as a colorless solid (0.5 g). Crystals of (I) were obtained by recrystallization from ethyl acetate as colorless rods.

Refinement top

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained C—H distances of 0.95 Å (CArH) and 0.98 Å (Csp3H). Uiso(H) values were set to 1.2Ueq for all H atoms.

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local procedures.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. A packing diagram of (I) shown looking down the b axis.
4-Nitrophenyl methacrylate top
Crystal data top
C10H9NO4F(000) = 864
Mr = 207.18Dx = 1.434 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 24.491 (6) ÅCell parameters from 2523 reflections
b = 3.753 (1) Åθ = 1.0–27.5°
c = 23.428 (6) ŵ = 0.11 mm1
β = 116.98 (1)°T = 90 K
V = 1919.0 (9) Å3Thin rod, colorless
Z = 80.30 × 0.10 × 0.04 mm
Data collection top
Nonius KappaCCD
diffractometer
2193 independent reflections
Radiation source: fine-focus sealed tube1380 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 18 pixels mm-1θmax = 27.5°, θmin = 1.9°
ω scans at fixed χ = 55°h = 3131
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 44
Tmin = 0.967, Tmax = 0.996l = 3029
3936 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0788P)2 + 0.0268P]
where P = (Fo2 + 2Fc2)/3
2193 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C10H9NO4V = 1919.0 (9) Å3
Mr = 207.18Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.491 (6) ŵ = 0.11 mm1
b = 3.753 (1) ÅT = 90 K
c = 23.428 (6) Å0.30 × 0.10 × 0.04 mm
β = 116.98 (1)°
Data collection top
Nonius KappaCCD
diffractometer
2193 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
1380 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.996Rint = 0.049
3936 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.04Δρmax = 0.32 e Å3
2193 reflectionsΔρmin = 0.29 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.34238 (9)0.3043 (6)0.08125 (9)0.0350 (5)
H1A0.30220.26360.04810.042*
H1B0.37690.23880.07530.042*
C20.41131 (8)0.5324 (6)0.19114 (9)0.0327 (5)
H2A0.44370.45510.18030.049*
H2B0.41530.40420.22930.049*
H2C0.41500.78910.19980.049*
C30.35044 (8)0.4545 (6)0.13665 (9)0.0258 (5)
C40.29729 (8)0.5595 (5)0.14726 (9)0.0247 (5)
C50.18934 (8)0.4978 (5)0.10638 (9)0.0232 (5)
C60.18535 (8)0.3892 (5)0.16081 (8)0.0248 (5)
H60.21960.28580.19580.030*
C70.13046 (8)0.4341 (5)0.16321 (9)0.0249 (5)
H70.12620.36070.19980.030*
C80.08165 (8)0.5879 (5)0.11143 (8)0.0225 (5)
C90.08549 (8)0.6948 (5)0.05692 (8)0.0239 (5)
H90.05110.79630.02180.029*
C100.14063 (8)0.6505 (5)0.05472 (8)0.0243 (5)
H100.14490.72420.01820.029*
N10.02377 (7)0.6382 (5)0.11468 (7)0.0273 (4)
O10.30028 (5)0.7338 (4)0.19146 (6)0.0309 (4)
O20.24257 (5)0.4394 (4)0.09952 (6)0.0265 (4)
O30.01867 (6)0.5094 (4)0.16001 (7)0.0379 (4)
O40.01732 (6)0.8076 (4)0.07152 (6)0.0356 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0292 (11)0.0418 (15)0.0387 (11)0.0006 (11)0.0195 (9)0.0047 (11)
C20.0274 (11)0.0333 (14)0.0390 (12)0.0015 (10)0.0165 (10)0.0001 (10)
C30.0258 (10)0.0259 (12)0.0286 (11)0.0004 (9)0.0148 (9)0.0030 (9)
C40.0239 (10)0.0250 (12)0.0228 (10)0.0004 (9)0.0084 (8)0.0007 (9)
C50.0217 (10)0.0231 (12)0.0272 (10)0.0010 (9)0.0133 (8)0.0051 (9)
C60.0215 (10)0.0237 (12)0.0246 (10)0.0001 (9)0.0066 (8)0.0014 (9)
C70.0258 (10)0.0254 (12)0.0238 (10)0.0008 (9)0.0116 (8)0.0005 (8)
C80.0199 (9)0.0233 (12)0.0251 (10)0.0017 (9)0.0107 (8)0.0032 (9)
C90.0230 (10)0.0233 (12)0.0219 (9)0.0006 (9)0.0070 (8)0.0013 (9)
C100.0269 (10)0.0248 (12)0.0204 (9)0.0004 (9)0.0102 (8)0.0007 (9)
N10.0238 (9)0.0312 (11)0.0268 (9)0.0008 (8)0.0113 (7)0.0005 (8)
O10.0260 (7)0.0375 (10)0.0295 (7)0.0029 (7)0.0129 (6)0.0088 (7)
O20.0201 (7)0.0343 (8)0.0258 (7)0.0005 (6)0.0111 (6)0.0043 (6)
O30.0317 (8)0.0518 (11)0.0365 (8)0.0040 (7)0.0210 (7)0.0094 (7)
O40.0251 (7)0.0489 (11)0.0319 (7)0.0098 (7)0.0121 (6)0.0059 (7)
Geometric parameters (Å, º) top
C1—C31.345 (3)C5—O21.402 (2)
C1—H1A0.9500C6—C71.381 (3)
C1—H1B0.9500C6—H60.9500
C2—C31.487 (2)C7—C81.385 (3)
C2—H2A0.9800C7—H70.9500
C2—H2B0.9800C8—C91.382 (2)
C2—H2C0.9800C8—N11.466 (2)
C3—C41.485 (3)C9—C101.385 (3)
C4—O11.199 (2)C9—H90.9500
C4—O21.375 (2)C10—H100.9500
C5—C101.381 (3)N1—O31.224 (2)
C5—C61.384 (3)N1—O41.231 (2)
C3—C1—H1A120.0C7—C6—H6120.7
C3—C1—H1B120.0C5—C6—H6120.7
H1A—C1—H1B120.0C6—C7—C8119.00 (17)
C3—C2—H2A109.5C6—C7—H7120.5
C3—C2—H2B109.5C8—C7—H7120.5
H2A—C2—H2B109.5C9—C8—C7122.47 (17)
C3—C2—H2C109.5C9—C8—N1118.91 (16)
H2A—C2—H2C109.5C7—C8—N1118.62 (16)
H2B—C2—H2C109.5C8—C9—C10118.42 (17)
C1—C3—C4121.11 (17)C8—C9—H9120.8
C1—C3—C2124.19 (18)C10—C9—H9120.8
C4—C3—C2114.70 (17)C5—C10—C9119.11 (17)
O1—C4—O2122.47 (17)C5—C10—H10120.4
O1—C4—C3125.08 (17)C9—C10—H10120.4
O2—C4—C3112.45 (16)O3—N1—O4123.34 (16)
C10—C5—C6122.41 (17)O3—N1—C8118.44 (15)
C10—C5—O2116.30 (16)O4—N1—C8118.22 (15)
C6—C5—O2121.19 (16)C4—O2—C5118.00 (14)
C7—C6—C5118.58 (17)
C1—C3—C4—O1170.1 (2)C6—C5—C10—C90.5 (3)
C2—C3—C4—O19.4 (3)O2—C5—C10—C9176.01 (16)
C1—C3—C4—O28.8 (3)C8—C9—C10—C50.8 (3)
C2—C3—C4—O2171.74 (17)C9—C8—N1—O3172.43 (18)
C10—C5—C6—C70.3 (3)C7—C8—N1—O37.5 (3)
O2—C5—C6—C7176.06 (18)C9—C8—N1—O47.5 (3)
C5—C6—C7—C80.4 (3)C7—C8—N1—O4172.65 (18)
C6—C7—C8—C90.8 (3)O1—C4—O2—C55.8 (3)
C6—C7—C8—N1179.34 (17)C3—C4—O2—C5175.30 (15)
C7—C8—C9—C101.0 (3)C10—C5—O2—C4129.61 (19)
N1—C8—C9—C10179.14 (16)C6—C5—O2—C453.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.952.413.130 (2)133
C1—H1B···O4ii0.952.643.546 (3)159
C2—H2A···O3ii0.982.683.611 (2)159
C9—H9···O4iii0.952.463.282 (2)145
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y1/2, z; (iii) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC10H9NO4
Mr207.18
Crystal system, space groupMonoclinic, C2/c
Temperature (K)90
a, b, c (Å)24.491 (6), 3.753 (1), 23.428 (6)
β (°) 116.98 (1)
V3)1919.0 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.10 × 0.04
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.967, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
3936, 2193, 1380
Rint0.049
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.145, 1.04
No. of reflections2193
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.29

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and local procedures.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.952.413.130 (2)132.7
C1—H1B···O4ii0.952.643.546 (3)158.5
C2—H2A···O3ii0.982.683.611 (2)158.5
C9—H9···O4iii0.952.463.282 (2)145.3
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y1/2, z; (iii) x, y+2, z.
 

Acknowledgements

YX and FQ thank Dr Sihui Long for helpful discussions and invaluable suggestions.

References

First citationBanks, A. R., Fibiger, R. F. & Jones, T. (1977). J. Org. Chem. 42, 3965–3966.  CrossRef CAS Web of Science Google Scholar
First citationHwang, J., Li, R. C. & Maynard, H. D. (2007). J. Controlled Release, 122, 279–286.  Web of Science CrossRef CAS Google Scholar
First citationLi, R. C., Hwang, J. & Maynard, H. D. (2007). Chem. Commun. 35, 3631–3633.  Web of Science CrossRef Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtsu, T., Ito, T., Fujii, Y. & Imoto, M. (1968). Bull. Chem. Soc. Jpn, 4, 204–207.  CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, X., Hu, Y. & Pan, C. (2007). Polymer, 48, 6354–6365.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds