organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(±)-trans-3-Oxo-1,2,3,4,4a,9,10,10a-octa­hydro­phenanthrene-10a-carboxylic acid: catemeric hydrogen bonding in a δ-keto acid

aCarl A. Olson Memorial Laboratories, Department of Chemistry, Rutgers University, Newark, NJ 07102, USA
*Correspondence e-mail: rogerlal@andromeda.rutgers.edu

(Received 9 August 2008; accepted 18 August 2008; online 23 August 2008)

The title compound, C15H16O3, aggregates as hydrogen-bonded catemers progressing from each carboxyl to the ketone of a screw-related neighbor [O⋯O = 2.6675 (14) Å and O—H⋯O = 170°]. Two parallel centrosymmetrically related single-strand hydrogen-bonding helices proceed through the cell in the b-axis direction. The packing includes three inter­molecular C—H⋯O=C close contacts, involving both the ketone and the carboxyl group. The structure is isomorphous with that of the previously described Δ4 α,β-unsaturated ketone.

Related literature

For related literature, see: Allen et al. (1999[Allen, F. H., Motherwell, W. D. S., Raithby, P. R., Shields, G. P. & Taylor, R. (1999). New J. Chem. 23, 25-34.]); Borthwick (1980[Borthwick, P. W. (1980). Acta Cryst. B36, 628-632.]); Gavezzotti & Filippini (1994[Gavezzotti, A. & Filippini, G. (1994). J. Phys. Chem. 98, 4831-4837.]); Leiserowitz (1976[Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.]); Miller et al. (1999[Miller, A. J., Brunskill, A. P. J., Lalancette, R. A. & Thompson, H. W. (1999). Acta Cryst. C55, 563-566.]); Steiner (1997[Steiner, T. (1997). Chem. Commun. pp. 727-734.]); Thompson & McPherson (1977[Thompson, H. W. & McPherson, E. (1977). J. Org. Chem. 42, 3350-3353.]); Thompson & Shah (1983[Thompson, H. W. & Shah, N. V. (1983). J. Org. Chem. 48, 1325-1328.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16O3

  • Mr = 244.28

  • Monoclinic, P 21 /n

  • a = 9.7172 (4) Å

  • b = 12.2735 (6) Å

  • c = 10.4867 (5) Å

  • β = 102.6764 (19)°

  • V = 1220.20 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.74 mm−1

  • T = 100 (2) K

  • 0.41 × 0.38 × 0.36 mm

Data collection
  • Bruker SMART CCD APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.750, Tmax = 0.775

  • 7219 measured reflections

  • 2106 independent reflections

  • 2019 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 1.05

  • 2106 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.84 1.84 2.6675 (14) 170
C2—H2A⋯O2ii 0.99 2.45 3.3817 (16) 156
C4—H4B⋯O2iii 0.99 2.60 3.5273 (18) 156
C8—H8A⋯O1iv 0.95 2.55 3.2625 (17) 132
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x, y, z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In ketocarboxylic acids the bias toward centrosymmetric acid pairing (Leiserowitz, 1976; Gavezzotti & Filippini, 1994; Allen et al., 1999) may be suppressed when molecular inflexibility diminishes the repertoire of conformational options. Keto acids with few fully rotatable bonds thus display an increased tendency to form acid-to-ketone H-bonding chains. In this context, we describe the title compound (I), which aggregates in the less common catemer mode.

Fig. 1 shows the asymmetric unit for (I) with its numbering. The sole option for full bond rotation involves the carboxyl group, which is turned so that its carbonyl lies over the ring system, with a C4A—C10A—C11—O2 torsion angle of 39.16 (17)°. Within the asymmetric unit, the dihedral angle for ketone (C2—C3—C4—O1) versus carboxyl (C10A—C11—O2—O3) is 86.06 (6)°. Because (I) is not dimeric, averaging of C—O bond lengths and C—C—O angles by disorder is precluded, and these values [1.2121 (17) & 1.3232 (17) Å] resemble ones typical for highly ordered carboxyls (Borthwick, 1980).

Fig. 2 illustrates the packing. The carboxyl-to-ketone H bonds proceed among molecules screw-related in b, generating two parallel single-strand helical catemers for each cell. These chains are centrosymmetrically related and thus counter-directional. For the ketone and carboxyl groups involved in each intermolecular H bond (Table 1), the C2—C3—C4—O1 versus C10A'-C11'-O2'-O3' [symmetry = 0.5 - x,-1/2 + y,0.5 - z] dihedral angle is 69.01 (6)°.

We characterize the geometry of H bonding to carbonyls using a combination of the H···O=C angle and the H···O=C—C torsion angle. These describe the approach of the H atom to the O in terms of its deviation from, respectively, C=O axiality and planarity with the carbonyl. In (I) these angles are 117° for H···O=C and -6.5° for H···O=C—C, extremely close to the "ideal" angles of 120 and 0°.

Within the 2.6 Å range we survey (Steiner, 1997), three intermolecular C—H···O=C close contacts were found in the packing, involving both the ketone and the carboxyl group. (Table 1).

Compound (I) is derived from the Δ4 isoskeletal unsaturated keto acid whose structure we have previously reported (Miller et al., 1999), and the molecular shapes of these two compounds are so similar that (I) was found to be isomorphous with the prior material.

Related literature top

For related literature, see: Allen et al. (1999); Borthwick (1980); Gavezzotti & Filippini (1994); Leiserowitz (1976); Miller et al. (1999); Steiner (1997); Thompson & McPherson (1977); Thompson & Shah (1983).

Experimental top

1-Tetralone was carbomethoxylated and then subjected to Robinson annulation as described by Thompson & McPherson (1977). The resulting unsaturated keto ester was hydrogenated over a Pd/C catalyst, after which Jones oxidation was employed to correct for overreduction. Mild saponification, modeled on that described by Thompson & Shah (1983), provided (I), which was sublimed and crystallized from diethyl ether to give the crystal used, m.p. 460 K. The solid-state (KBr) infrared spectrum of (I) has C=O absorptions at 1716 & 1685 cm-1. This peak separation is typical of the H-bonding shifts in catemers, due to, respectively, its removal from the acid C=O and its addition to the ketone. In CHCl3 solution, where dimers predominate, these peaks coalesce to a single absorption at 1707 cm-1.

Refinement top

All H atoms for (I) were found in electron density difference maps. The O—H was constrained to an idealized position with its distance fixed at 0.84 Å and Uiso(H) = 1.5Ueq(O). The aromatic, methylene & methine Hs were placed in geometrically idealized positions and constrained to ride on their parent C atoms with C—H distances of 0.95, 0.99 & 1.00 Å, respectively, and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), with its numbering. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram for (I), with extracellular molecules, illustrating a counter-directional pair of parallel H-bonding chains. For clarity, all C-bound H atoms are omitted. Displacement ellipsoids are drawn at the 30% probability level.
(±)-trans-3-Oxo-1,2,3,4,4a,9,10,10a-octahydrophenanthrene- 10a-carboxylic acid top
Crystal data top
C15H16O3F(000) = 520
Mr = 244.28Dx = 1.330 Mg m3
Monoclinic, P21/nMelting point: 460 K
Hall symbol: -P 2ynCu Kα radiation, λ = 1.54178 Å
a = 9.7172 (4) ÅCell parameters from 4354 reflections
b = 12.2735 (6) Åθ = 4.3–67.3°
c = 10.4867 (5) ŵ = 0.74 mm1
β = 102.6764 (19)°T = 100 K
V = 1220.20 (10) Å3Block, colourless
Z = 40.41 × 0.38 × 0.36 mm
Data collection top
Bruker SMART CCD APEXII area-detector
diffractometer
2106 independent reflections
Radiation source: fine-focus sealed tube2019 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 67.8°, θmin = 5.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1111
Tmin = 0.750, Tmax = 0.775k = 1411
7219 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.061P)2 + 0.4428P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2106 reflectionsΔρmax = 0.25 e Å3
165 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0050 (8)
Crystal data top
C15H16O3V = 1220.20 (10) Å3
Mr = 244.28Z = 4
Monoclinic, P21/nCu Kα radiation
a = 9.7172 (4) ŵ = 0.74 mm1
b = 12.2735 (6) ÅT = 100 K
c = 10.4867 (5) Å0.41 × 0.38 × 0.36 mm
β = 102.6764 (19)°
Data collection top
Bruker SMART CCD APEXII area-detector
diffractometer
2106 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2019 reflections with I > 2σ(I)
Tmin = 0.750, Tmax = 0.775Rint = 0.019
7219 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.05Δρmax = 0.25 e Å3
2106 reflectionsΔρmin = 0.20 e Å3
165 parameters
Special details top

Experimental. crystal mounted on cryoloop using Paratone-N

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.16954 (13)0.53956 (9)0.02162 (9)0.0406 (3)
C10.01276 (13)0.72351 (11)0.19416 (12)0.0252 (3)
H1A0.09680.67570.17410.030*
H1B0.04610.79990.18450.030*
O20.29511 (10)0.78231 (9)0.34146 (10)0.0350 (3)
C20.07805 (14)0.70150 (11)0.09446 (12)0.0265 (3)
H2A0.01720.70360.00540.032*
H2B0.14900.76030.10050.032*
O30.14561 (11)0.87586 (8)0.43269 (10)0.0356 (3)
H30.21080.92220.44360.053*
C30.15250 (14)0.59394 (11)0.11443 (13)0.0267 (3)
C4B0.19751 (13)0.56160 (11)0.49180 (12)0.0238 (3)
C40.21490 (14)0.55868 (12)0.25238 (13)0.0278 (3)
H4A0.30900.59270.28090.033*
H4B0.22860.47870.25340.033*
C4A0.12567 (13)0.58788 (11)0.35068 (12)0.0230 (3)
H4AA0.04170.53870.32950.028*
C50.31064 (14)0.48895 (11)0.52183 (13)0.0268 (3)
H5A0.34800.45890.45310.032*
C60.36977 (14)0.45965 (12)0.65045 (14)0.0305 (3)
H6A0.44600.40950.66890.037*
C70.31676 (15)0.50411 (12)0.75139 (13)0.0322 (4)
H7A0.35590.48410.83940.039*
C8A0.14555 (14)0.60769 (11)0.59434 (13)0.0255 (3)
C80.20659 (15)0.57772 (12)0.72309 (13)0.0297 (3)
H8A0.17150.60870.79270.036*
C90.02840 (15)0.69172 (11)0.57102 (13)0.0287 (3)
H9A0.06700.76150.61080.034*
H9B0.04550.66780.61650.034*
C10A0.06525 (13)0.70445 (10)0.33777 (12)0.0226 (3)
C100.04018 (14)0.71177 (11)0.42685 (13)0.0266 (3)
H10A0.08410.78490.41770.032*
H10B0.11590.65740.39800.032*
C110.18214 (14)0.78966 (11)0.37191 (12)0.0250 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0641 (7)0.0364 (6)0.0228 (5)0.0208 (5)0.0127 (5)0.0039 (4)
C10.0259 (6)0.0238 (7)0.0242 (7)0.0037 (5)0.0017 (5)0.0005 (5)
O20.0286 (5)0.0341 (6)0.0421 (6)0.0062 (4)0.0075 (4)0.0009 (4)
C20.0313 (7)0.0254 (7)0.0211 (6)0.0038 (5)0.0021 (5)0.0029 (5)
O30.0500 (6)0.0266 (6)0.0339 (6)0.0128 (4)0.0173 (5)0.0087 (4)
C30.0303 (7)0.0273 (7)0.0229 (7)0.0029 (5)0.0063 (5)0.0024 (5)
C4B0.0268 (6)0.0220 (7)0.0219 (6)0.0057 (5)0.0039 (5)0.0016 (5)
C40.0330 (7)0.0274 (7)0.0219 (7)0.0085 (5)0.0037 (5)0.0019 (5)
C4A0.0255 (6)0.0220 (7)0.0207 (6)0.0008 (5)0.0036 (5)0.0008 (5)
C50.0271 (7)0.0282 (8)0.0242 (7)0.0036 (5)0.0038 (5)0.0034 (5)
C60.0268 (7)0.0317 (8)0.0301 (7)0.0049 (6)0.0002 (5)0.0086 (6)
C70.0332 (7)0.0381 (8)0.0221 (7)0.0130 (6)0.0007 (5)0.0071 (6)
C8A0.0288 (7)0.0238 (7)0.0240 (7)0.0089 (5)0.0056 (5)0.0004 (5)
C80.0352 (7)0.0316 (8)0.0224 (7)0.0125 (6)0.0068 (5)0.0009 (5)
C90.0362 (7)0.0259 (7)0.0267 (7)0.0042 (6)0.0129 (6)0.0015 (5)
C10A0.0244 (6)0.0214 (7)0.0214 (6)0.0005 (5)0.0035 (5)0.0000 (5)
C100.0268 (6)0.0250 (7)0.0288 (7)0.0013 (5)0.0078 (5)0.0015 (5)
C110.0309 (7)0.0243 (7)0.0185 (6)0.0023 (5)0.0025 (5)0.0030 (5)
Geometric parameters (Å, º) top
O1—C31.2210 (17)C4A—C10A1.5411 (18)
C1—C21.5328 (18)C4A—H4AA1.0000
C1—C10A1.5481 (17)C5—C61.3923 (19)
C1—H1A0.9900C5—H5A0.9500
C1—H1B0.9900C6—C71.387 (2)
O2—C111.2121 (17)C6—H6A0.9500
C2—C31.4979 (19)C7—C81.382 (2)
C2—H2A0.9900C7—H7A0.9500
C2—H2B0.9900C8A—C81.3996 (19)
O3—C111.3232 (17)C8A—C91.516 (2)
O3—H30.8400C8—H8A0.9500
C3—C41.5043 (18)C9—C101.5324 (18)
C4B—C51.397 (2)C9—H9A0.9900
C4B—C8A1.4034 (19)C9—H9B0.9900
C4B—C4A1.5258 (17)C10A—C111.5276 (18)
C4—C4A1.5280 (18)C10A—C101.5331 (17)
C4—H4A0.9900C10—H10A0.9900
C4—H4B0.9900C10—H10B0.9900
C2—C1—C10A113.87 (10)C7—C6—C5119.64 (13)
C2—C1—H1A108.8C7—C6—H6A120.2
C10A—C1—H1A108.8C5—C6—H6A120.2
C2—C1—H1B108.8C8—C7—C6119.55 (12)
C10A—C1—H1B108.8C8—C7—H7A120.2
H1A—C1—H1B107.7C6—C7—H7A120.2
C3—C2—C1113.12 (11)C8—C8A—C4B119.06 (13)
C3—C2—H2A109.0C8—C8A—C9118.61 (12)
C1—C2—H2A109.0C4B—C8A—C9122.31 (12)
C3—C2—H2B109.0C7—C8—C8A121.55 (13)
C1—C2—H2B109.0C7—C8—H8A119.2
H2A—C2—H2B107.8C8A—C8—H8A119.2
C11—O3—H3109.5C8A—C9—C10114.65 (11)
O1—C3—C2121.08 (12)C8A—C9—H9A108.6
O1—C3—C4120.85 (12)C10—C9—H9A108.6
C2—C3—C4117.93 (11)C8A—C9—H9B108.6
C5—C4B—C8A118.84 (12)C10—C9—H9B108.6
C5—C4B—C4A121.57 (12)H9A—C9—H9B107.6
C8A—C4B—C4A119.54 (12)C11—C10A—C10112.27 (10)
C3—C4—C4A114.37 (11)C11—C10A—C4A111.45 (10)
C3—C4—H4A108.7C10—C10A—C4A107.07 (10)
C4A—C4—H4A108.7C11—C10A—C1107.74 (10)
C3—C4—H4B108.7C10—C10A—C1109.50 (10)
C4A—C4—H4B108.7C4A—C10A—C1108.76 (10)
H4A—C4—H4B107.6C9—C10—C10A112.81 (11)
C4B—C4A—C4113.46 (11)C9—C10—H10A109.0
C4B—C4A—C10A111.46 (11)C10A—C10—H10A109.0
C4—C4A—C10A114.84 (11)C9—C10—H10B109.0
C4B—C4A—H4AA105.4C10A—C10—H10B109.0
C4—C4A—H4AA105.4H10A—C10—H10B107.8
C10A—C4A—H4AA105.4O2—C11—O3122.73 (12)
C6—C5—C4B121.35 (13)O2—C11—C10A123.85 (12)
C6—C5—H5A119.3O3—C11—C10A113.33 (11)
C4B—C5—H5A119.3
C10A—C1—C2—C349.48 (16)C8—C8A—C9—C10174.95 (11)
C1—C2—C3—O1143.89 (14)C4B—C8A—C9—C107.00 (18)
C1—C2—C3—C440.45 (16)C4B—C4A—C10A—C1164.36 (13)
O1—C3—C4—C4A146.29 (14)C4—C4A—C10A—C1166.43 (14)
C2—C3—C4—C4A38.04 (17)C4B—C4A—C10A—C1058.77 (13)
C5—C4B—C4A—C418.50 (18)C4—C4A—C10A—C10170.44 (11)
C8A—C4B—C4A—C4164.19 (12)C4B—C4A—C10A—C1177.00 (10)
C5—C4B—C4A—C10A150.00 (12)C4—C4A—C10A—C152.20 (14)
C8A—C4B—C4A—C10A32.69 (16)C2—C1—C10A—C1166.13 (14)
C3—C4—C4A—C4B174.25 (11)C2—C1—C10A—C10171.50 (11)
C3—C4—C4A—C10A44.43 (16)C2—C1—C10A—C4A54.81 (14)
C8A—C4B—C5—C61.67 (19)C8A—C9—C10—C10A35.51 (16)
C4A—C4B—C5—C6175.66 (12)C11—C10A—C10—C961.41 (14)
C4B—C5—C6—C70.7 (2)C4A—C10A—C10—C961.21 (14)
C5—C6—C7—C80.6 (2)C1—C10A—C10—C9178.96 (11)
C5—C4B—C8A—C81.36 (19)C10—C10A—C11—O2159.27 (12)
C4A—C4B—C8A—C8176.02 (11)C4A—C10A—C11—O239.16 (17)
C5—C4B—C8A—C9176.67 (12)C1—C10A—C11—O280.08 (15)
C4A—C4B—C8A—C95.94 (18)C10—C10A—C11—O324.00 (15)
C6—C7—C8—C8A0.8 (2)C4A—C10A—C11—O3144.12 (11)
C4B—C8A—C8—C70.13 (19)C1—C10A—C11—O396.65 (12)
C9—C8A—C8—C7177.98 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.841.842.6675 (14)170
C2—H2A···O2ii0.992.453.3817 (16)156
C4—H4B···O2iii0.992.603.5273 (18)156
C8—H8A···O1iv0.952.553.2625 (17)132
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+3/2, z1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H16O3
Mr244.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.7172 (4), 12.2735 (6), 10.4867 (5)
β (°) 102.6764 (19)
V3)1220.20 (10)
Z4
Radiation typeCu Kα
µ (mm1)0.74
Crystal size (mm)0.41 × 0.38 × 0.36
Data collection
DiffractometerBruker SMART CCD APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.750, 0.775
No. of measured, independent and
observed [I > 2σ(I)] reflections
7219, 2106, 2019
Rint0.019
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.05
No. of reflections2106
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.20

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.841.842.6675 (14)170
C2—H2A···O2ii0.992.453.3817 (16)156
C4—H4B···O2iii0.992.603.5273 (18)156
C8—H8A···O1iv0.952.553.2625 (17)132
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+3/2, z1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x, y, z+1.
 

Acknowledgements

HWT is grateful to Professor Gree Loober Spoog for helpful consultations. The authors acknowledge support by NSF-CRIF grant No. 0443538.

References

First citationAllen, F. H., Motherwell, W. D. S., Raithby, P. R., Shields, G. P. & Taylor, R. (1999). New J. Chem. 23, 25–34.  Web of Science CrossRef CAS Google Scholar
First citationBorthwick, P. W. (1980). Acta Cryst. B36, 628–632.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGavezzotti, A. & Filippini, G. (1994). J. Phys. Chem. 98, 4831–4837.  CrossRef CAS Web of Science Google Scholar
First citationLeiserowitz, L. (1976). Acta Cryst. B32, 775–802.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMiller, A. J., Brunskill, A. P. J., Lalancette, R. A. & Thompson, H. W. (1999). Acta Cryst. C55, 563–566.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (1997). Chem. Commun. pp. 727–734.  CrossRef Web of Science Google Scholar
First citationThompson, H. W. & McPherson, E. (1977). J. Org. Chem. 42, 3350–3353.  CrossRef CAS Web of Science Google Scholar
First citationThompson, H. W. & Shah, N. V. (1983). J. Org. Chem. 48, 1325–1328.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds