organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4,6-di­amino­pyrimidin-2-yl) di­sulfide di­methyl sufoxide disolvate

aDepartment of Chemistry, Aristotle University of Thessaloniki, 54006 Thessaloniki, Greece, bAl Huson University College, Al Balqa' Applied University, Al-Huson, Jordan, and cFaculty of Chemistry, Adam Mickiewicz University, 60-780 Poznań, Poland
*Correspondence e-mail: magdan@amu.edu.pl

(Received 31 July 2008; accepted 1 August 2008; online 9 August 2008)

The title compound, C8H10N8S2·2C2H6SO, was obtained unintentionally during an attempt to prepare a thiol­ate derivative of trimethyl­tin. The complete disulfide mol­ecule is generated by twofold rotation symmetry and the C—S—S—C torsion angle around the S—S bond is −85.70 (10)°. The mol­ecules are connected via N—H⋯N hydrogen bonds into strongly corrugated layers parallel to (001), generating an R22(8) motif. The solvent mol­ecule, which exhibits minor disorder of its S atom [site occupancies = 0.9591 (18) and 0.0409 (18)], is linked to this layer via a pair of N—H⋯O inter­actions.

Related literature

For information on the preferred conformations of organic disulfides, see: Sączewski et al. (2006[Sączewski, J., Frontera, A., Gdaniec, M., Brzozowski, Z., Sączewski, F., Tabin, P., Quinoñero, D. & Deyà, P. M. (2006). Chem. Phys. Lett. 422, 234-239.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10N8S2·2C2H6OS

  • Mr = 438.62

  • Orthorhombic, P c c n

  • a = 11.2612 (4) Å

  • b = 11.9948 (5) Å

  • c = 15.0754 (6) Å

  • V = 2036.32 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 130 (2) K

  • 0.40 × 0.10 × 0.10 mm

Data collection
  • Kuma KM-4-CCD κ geometry diffractometer

  • Absorption correction: none

  • 17524 measured reflections

  • 2240 independent reflections

  • 1944 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.078

  • S = 1.04

  • 2240 reflections

  • 146 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7A⋯O1i 0.78 (2) 2.20 (2) 2.959 (2) 165 (2)
N7—H7B⋯N1ii 0.846 (19) 2.33 (2) 3.169 (2) 175.1 (16)
N8—H8A⋯O1iii 0.84 (2) 2.09 (2) 2.9109 (19) 164.4 (18)
N8—H8B⋯N3iv 0.81 (2) 2.33 (2) 3.088 (2) 156.8 (19)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989[Siemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), is shown in Fig. 1. In the crystal it adopts a chiral conformation of C2 symmetry with the torsion angle around the S–S bond of -85.70 (10)°. The S–S bond length of 2.0249 (7) Å is typical of disulfides in a screw conformation (Sączewski et al., 2006). In turn the torsion angle of -8.23 (13)° around the C–S bond shows that the disulfide S atoms are situated close to the pyrimidine plane.

The component molecules of (I) are connected via weak N—H···N interactions generating R22(8) hydrogen-bond motif into strongly corrugated layer parallel to (001) (Fig. 2, Table 1). The solvent molecules, which exhibit minor disorder of their S atoms, join to this layer via a pair of N—H···O interactions and thus all N–H donors are involved in hydrogen bonding. Crystal packing in the title compound is shown in Fig. 3.

Related literature top

For information on the preferred conformations of organic disulfides, see: Sączewski et al. (2006).

Experimental top

1 mmol of 4,6-diaminopyrimidine-2-thiol was dissolved in 10 ml of DMSO at room temperature and was neutralized by the addition of 1 ml of 1 M solution of NaOH in methanol. Then, 5 ml of a methanolic solution containing 1 mmol of triorganotin chloride was added and the solution was stirred at room temperature for 1 h. Filtration removed minor solid byproducts and the solution was concentrated by rotary evaporation. After cooling and leaving the solution in the refrigerator for about one week, colourless prisms of (I) appeared.

Refinement top

The S atom of the DMSO molecule is disordered over two positions in a 0.9591 (18):0.0409 (18) ratio. The minor component was refined isotropically.

The H atoms of the N—H groups were located in a difference map and refined isotropically. Positions of the H atoms from the C—H groups were determined geometrically (C—H = 0.96Å) and refined as riding with their isotropic displacement parameters freely refined.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis CCD (Oxford Diffraction, 2003); data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The molecular structure of (I) with displacement ellipsoids shown at the 50% probability level. Bonds of the DMSO molecule in the minor orientation are shown as dashed lines. The unlabelled atoms of the disulfide molecule are generated by the symmetry operation (3/2-x, 1/2-y, z).
[Figure 2] Fig. 2. : The crystal structure of (I) viewed down the b axis. Hydrogen bonds are shown with dashed lines.
[Figure 3] Fig. 3. : Hydrogen-bonded two-dimesional assembly of molecules in (I), parallel to the (001) plane. Hydrogen bonds are shown with dashed lines.
Bis(4,6-diaminopyrimidin-2-yl) disulfide dimethyl sufoxide disolvate top
Crystal data top
C8H10N8S2·2C2H6OSF(000) = 920
Mr = 438.62Dx = 1.431 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 8255 reflections
a = 11.2612 (4) Åθ = 4–27°
b = 11.9948 (5) ŵ = 0.49 mm1
c = 15.0754 (6) ÅT = 130 K
V = 2036.32 (14) Å3Prism, colourless
Z = 40.40 × 0.10 × 0.10 mm
Data collection top
Kuma KM-4-CCD κ geometry
diffractometer
1944 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 27.1°, θmin = 4.7°
ω scansh = 1414
17524 measured reflectionsk = 1515
2240 independent reflectionsl = 1912
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: difmap and geom
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0487P)2]
where P = (Fo2 + 2Fc2)/3
2240 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C8H10N8S2·2C2H6OSV = 2036.32 (14) Å3
Mr = 438.62Z = 4
Orthorhombic, PccnMo Kα radiation
a = 11.2612 (4) ŵ = 0.49 mm1
b = 11.9948 (5) ÅT = 130 K
c = 15.0754 (6) Å0.40 × 0.10 × 0.10 mm
Data collection top
Kuma KM-4-CCD κ geometry
diffractometer
1944 reflections with I > 2σ(I)
17524 measured reflectionsRint = 0.035
2240 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.23 e Å3
2240 reflectionsΔρmin = 0.31 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. DMSO molecule is slightly disordered. In the minor orientation the DMSO C and O atoms superimpose with the C and O atoms of the major orientation. The S atom is split into two positions with occupancies 0.96 and 0.04.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.69207 (3)0.18545 (3)0.35324 (2)0.01604 (12)
N10.57870 (10)0.31222 (10)0.22912 (8)0.0152 (3)
C20.58248 (12)0.21471 (12)0.26959 (9)0.0144 (3)
N30.51503 (10)0.12462 (10)0.25880 (8)0.0170 (3)
C40.43156 (13)0.13306 (12)0.19373 (10)0.0189 (3)
C50.42109 (13)0.22991 (12)0.14298 (10)0.0198 (3)
H5A0.36560.23450.09480.028 (5)*
C60.49402 (13)0.31911 (12)0.16390 (10)0.0166 (3)
N70.36069 (14)0.04423 (12)0.18104 (11)0.0279 (4)
H7A0.3204 (18)0.0445 (16)0.1393 (13)0.026 (5)*
H7B0.3746 (16)0.0163 (16)0.2079 (11)0.024 (5)*
N80.48636 (13)0.41723 (12)0.11984 (10)0.0221 (3)
H8A0.4314 (19)0.4234 (16)0.0824 (13)0.036 (6)*
H8B0.5057 (18)0.4735 (17)0.1454 (14)0.035 (6)*
S20.26010 (4)0.05431 (4)0.41883 (3)0.02342 (15)0.9591 (18)
O10.26997 (10)0.08760 (10)0.51429 (7)0.0276 (3)
C90.21608 (17)0.08841 (15)0.41993 (13)0.0341 (4)
H9A0.28080.13380.44020.057 (7)*
H9B0.14950.09740.45910.047 (6)*
H9C0.19390.11090.36110.071 (8)*
C100.1254 (2)0.1121 (2)0.37893 (17)0.0564 (7)
H10A0.13270.19160.37380.071 (8)*
H10B0.10720.08090.32190.104 (11)*
H10C0.06280.09440.41990.056 (7)*
S2'0.1601 (14)0.0428 (13)0.4582 (10)0.056 (5)*0.0409 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01515 (19)0.01586 (19)0.0171 (2)0.00024 (13)0.00058 (14)0.00286 (14)
N10.0156 (6)0.0131 (6)0.0167 (7)0.0008 (5)0.0011 (5)0.0004 (5)
C20.0139 (6)0.0154 (7)0.0138 (7)0.0025 (5)0.0023 (5)0.0012 (6)
N30.0172 (6)0.0151 (6)0.0185 (7)0.0009 (5)0.0007 (5)0.0001 (5)
C40.0186 (7)0.0161 (7)0.0221 (8)0.0002 (6)0.0010 (6)0.0024 (6)
C50.0201 (7)0.0168 (8)0.0226 (8)0.0006 (6)0.0058 (6)0.0014 (6)
C60.0179 (7)0.0158 (7)0.0162 (7)0.0024 (5)0.0010 (6)0.0013 (6)
N70.0306 (8)0.0179 (7)0.0353 (9)0.0077 (6)0.0162 (7)0.0053 (7)
N80.0252 (7)0.0164 (7)0.0247 (8)0.0013 (6)0.0099 (6)0.0019 (6)
S20.0229 (2)0.0294 (3)0.0179 (2)0.00107 (17)0.00281 (17)0.00052 (17)
O10.0298 (6)0.0316 (7)0.0215 (6)0.0015 (5)0.0053 (5)0.0091 (5)
C90.0388 (10)0.0317 (10)0.0318 (11)0.0018 (8)0.0077 (8)0.0085 (8)
C100.0490 (14)0.0504 (14)0.0697 (17)0.0079 (11)0.0347 (13)0.0077 (13)
Geometric parameters (Å, º) top
S1—C21.7990 (15)N7—H7B0.846 (19)
S1—S1i2.0249 (7)N8—H8A0.84 (2)
N1—C21.3198 (18)N8—H8B0.81 (2)
N1—C61.3722 (19)S2—O11.4976 (11)
C2—N31.3309 (19)S2—C101.773 (2)
N3—C41.3623 (19)S2—C91.7822 (19)
C4—N71.345 (2)C9—H9A0.9600
C4—C51.396 (2)C9—H9B0.9601
C5—C61.385 (2)C9—H9C0.9601
C5—H5A0.9601C10—H10A0.9601
C6—N81.354 (2)C10—H10B0.9601
N7—H7A0.78 (2)C10—H10C0.9600
C2—S1—S1i107.03 (5)C6—N8—H8A116.9 (13)
C2—N1—C6114.02 (12)C6—N8—H8B118.4 (14)
N1—C2—N3130.14 (13)H8A—N8—H8B116 (2)
N1—C2—S1121.27 (11)O1—S2—C10106.58 (10)
N3—C2—S1108.59 (10)O1—S2—C9105.54 (8)
C2—N3—C4114.92 (12)C10—S2—C998.08 (11)
N7—C4—N3116.94 (14)S2—C9—H9A109.7
N7—C4—C5122.08 (15)S2—C9—H9B109.3
N3—C4—C5120.98 (13)H9A—C9—H9B109.5
C6—C5—C4117.90 (14)S2—C9—H9C109.5
C6—C5—H5A120.9H9A—C9—H9C109.5
C4—C5—H5A121.2H9B—C9—H9C109.5
N8—C6—N1116.62 (13)S2—C10—H10A110.0
N8—C6—C5121.46 (14)S2—C10—H10B109.5
N1—C6—C5121.91 (13)H10A—C10—H10B109.5
C4—N7—H7A117.4 (15)S2—C10—H10C108.9
C4—N7—H7B120.2 (12)H10A—C10—H10C109.5
H7A—N7—H7B119.9 (19)H10B—C10—H10C109.5
C6—N1—C2—N32.4 (2)C2—N3—C4—C50.6 (2)
C6—N1—C2—S1176.75 (10)N7—C4—C5—C6176.79 (15)
S1i—S1—C2—N18.23 (13)N3—C4—C5—C63.3 (2)
S1i—S1—C2—N3171.09 (8)C2—N1—C6—N8179.77 (13)
N1—C2—N3—C42.5 (2)C2—N1—C6—C50.8 (2)
S1—C2—N3—C4176.76 (10)C4—C5—C6—N8177.67 (14)
C2—N3—C4—N7179.45 (14)C4—C5—C6—N13.4 (2)
Symmetry code: (i) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7A···O1ii0.78 (2)2.20 (2)2.959 (2)165 (2)
N7—H7B···N1iii0.846 (19)2.33 (2)3.169 (2)175.1 (16)
N8—H8A···O1iv0.84 (2)2.09 (2)2.9109 (19)164.4 (18)
N8—H8B···N3v0.81 (2)2.33 (2)3.088 (2)156.8 (19)
Symmetry codes: (ii) x+1/2, y, z1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H10N8S2·2C2H6OS
Mr438.62
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)130
a, b, c (Å)11.2612 (4), 11.9948 (5), 15.0754 (6)
V3)2036.32 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.40 × 0.10 × 0.10
Data collection
DiffractometerKuma KM-4-CCD κ geometry
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
17524, 2240, 1944
Rint0.035
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.078, 1.04
No. of reflections2240
No. of parameters146
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.31

Computer programs: CrysAlis CCD (Oxford Diffraction, 2003), CrysAlis RED (Oxford Diffraction, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Stereochemical Workstation Operation Manual (Siemens, 1989) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7A···O1i0.78 (2)2.20 (2)2.959 (2)165 (2)
N7—H7B···N1ii0.846 (19)2.33 (2)3.169 (2)175.1 (16)
N8—H8A···O1iii0.84 (2)2.09 (2)2.9109 (19)164.4 (18)
N8—H8B···N3iv0.81 (2)2.33 (2)3.088 (2)156.8 (19)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y+1/2, z+1/2.
 

References

First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, Oxfordshire, England.  Google Scholar
First citationSączewski, J., Frontera, A., Gdaniec, M., Brzozowski, Z., Sączewski, F., Tabin, P., Quinoñero, D. & Deyà, P. M. (2006). Chem. Phys. Lett. 422, 234–239.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds