metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{μ-6,6′-Dimeth­­oxy-2,2′-[propane-1,3-diylbis(nitrilo­methyl­­idyne)]diphenolato}di­methano­ltrinitratonickel(II)lanthanum(III) methanol disolvate

aCollege of Chemical Engineering and Materials, Eastern Liaoning University, 325 Wenhua Road, Yuanbao District, Dandong City, Liaoning Province, 118003, People's Republic of China
*Correspondence e-mail: berylliu8090@sina.com

(Received 11 August 2008; accepted 21 August 2008; online 30 August 2008)

In the title dinuclear complex, [NiLa(C19H20N2O4)(NO3)3(CH3OH)2]·2CH3OH, the NiII ion is coordinated by two O atoms and two N atoms of a Schiff base ligand and by two O atoms of two methanol ligands, forming a slightly distorted octa­hedral geometry. The LaIII ion is coordinated by six O atoms from three chelating nitrate ligands and four O atoms from the Schiff base ligand, forming a distorted bicapped square-anti­prismatic environment. In the crystal structure, inter­molecular O—H—O hydrogen bonds connect complex mol­ecules and methanol solvent mol­ecules, forming a two-dimensional network.

Related literature

For the isostructural Pr(III) complex, see: Liu & Zhang (2008[Liu, F. & Zhang, F. (2008). Acta Cryst. E64, m589.]). For a related Sm(III) complex, see: Wang et al. (2008[Wang, J.-H., Gao, P., Yan, P.-F., Li, G.-M. & Hou, G.-F. (2008). Acta Cryst. E64, m344.]).

[Scheme 1]

Experimental

Crystal data
  • [NiLa(C19H20N2O4)(NO3)3(CH3OH)2]·2CH3OH

  • Mr = 852.19

  • Monoclinic, P 21 /c

  • a = 13.123 (4) Å

  • b = 11.141 (3) Å

  • c = 22.245 (8) Å

  • β = 90.911 (13)°

  • V = 3252.0 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.96 mm−1

  • T = 291 (2) K

  • 0.30 × 0.27 × 0.25 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.594, Tmax = 0.635

  • 29897 measured reflections

  • 7431 independent reflections

  • 6035 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.077

  • S = 1.06

  • 7431 reflections

  • 430 parameters

  • 19 restraints

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O17—H33⋯O16 0.85 2.10 2.665 (7) 124
O15—H25⋯O16i 0.85 1.83 2.681 (5) 174
O14—H21⋯O12ii 0.85 2.34 3.169 (5) 165
O16—H29⋯O15iii 0.85 2.35 2.681 (5) 104
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As shown in Fig. 1, the hexadentate Schiff base ligand links Ni and La atoms into a dinuclear complex through two phenolate O atoms, which is the same as the bonding in the isostructural Pr(III) complex of the same ligand (Liu & Zhang, 2008) and a related Cu(II)/Sm(III) complex (Wang et al., 2008). The LaIII ion in (I) is ten-coordinated by four oxygen atoms from the ligand and six oxygen atoms from three nitrate ions. The NiII center is six-coordinate by two nitrogen atoms and two oxygen atoms from the ligand and two methanol oxygen atoms. The are two solvent methanol molecules for each complex molecule. In the crystal structure, intermolecular O—H—O hydrogen bonds connect complex molecules and methanol solvent molecules to form two-dimension structure.

Related literature top

For the isostructural Pr(III) complex, see: Liu & Zhang (2008). For a related Sm(III) complex, see: Wang et al. (2008).

Experimental top

The title complex was obtained by the treatment of nickel(II) acetate tetrahydrate (0.0622 g, 0.25 mmol) with the Schiff base (0.0855 g, 0.25 mmol) in methanol (25 ml) at room temperature. Then the mixture was refluxed for 3 h after the addition of lanthanum (III) nitrate hexahydrate (0.1082 g, 0.25 mmol). The reaction mixture was cooled and filtered; diethyl ether was allowed to diffuse slowly into the solution of the filtrate. Blue single crystals were obtained after several days. Analysis calculated for C23H36NiN5O17La: C, 32.48; H, 4.02; N, 8.27; found: C, 32.49; H, 4.03; N, 8.24

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.97 Å (methylene C) and with Uiso(H) = 1.2Ueq(C) or C—H = 0.96 Å (methly C) and with Uiso(H) = 1.5Ueq(C). H atoms bond to O atoms of methanol were initially located in a difference Fourier map, but were subsequently treated as riding on their parent atoms, with O—H = 0.85 Å, and with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 40% probability displacement ellipsoids. The dashed line indicates a hydrogen bond.
(I) top
Crystal data top
[NiLa(C19H20N2O4)(NO3)3(CH3OH)2]·2CH3OHF(000) = 1716
Mr = 852.19Dx = 1.739 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 24213 reflections
a = 13.123 (4) Åθ = 6.0–55.0°
b = 11.141 (3) ŵ = 1.96 mm1
c = 22.245 (8) ÅT = 291 K
β = 90.911 (13)°Block, green
V = 3252.0 (17) Å30.30 × 0.27 × 0.25 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7431 independent reflections
Radiation source: fine-focus sealed tube6035 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1617
Tmin = 0.594, Tmax = 0.635k = 1414
29897 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0311P)2 + 2.8126P]
where P = (Fo2 + 2Fc2)/3
7431 reflections(Δ/σ)max = 0.005
430 parametersΔρmax = 0.67 e Å3
19 restraintsΔρmin = 0.56 e Å3
Crystal data top
[NiLa(C19H20N2O4)(NO3)3(CH3OH)2]·2CH3OHV = 3252.0 (17) Å3
Mr = 852.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.123 (4) ŵ = 1.96 mm1
b = 11.141 (3) ÅT = 291 K
c = 22.245 (8) Å0.30 × 0.27 × 0.25 mm
β = 90.911 (13)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7431 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
6035 reflections with I > 2σ(I)
Tmin = 0.594, Tmax = 0.635Rint = 0.039
29897 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03219 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.07Δρmax = 0.67 e Å3
7431 reflectionsΔρmin = 0.56 e Å3
430 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8780 (2)0.0634 (3)0.09172 (14)0.0366 (7)
C20.9465 (2)0.1419 (3)0.06390 (15)0.0401 (7)
C31.0476 (3)0.1149 (4)0.05748 (18)0.0537 (9)
H11.09100.16930.03910.064*
C41.0845 (3)0.0066 (4)0.0784 (2)0.0643 (12)
H21.15310.01230.07430.077*
C51.0206 (3)0.0725 (4)0.10520 (19)0.0589 (10)
H31.04650.14510.11930.071*
C60.9159 (3)0.0475 (3)0.11218 (16)0.0431 (8)
C70.8545 (3)0.1397 (3)0.13938 (15)0.0451 (8)
H40.88740.21240.14650.054*
C80.7240 (3)0.2462 (4)0.1852 (2)0.0601 (11)
H50.75020.31570.16420.072*
H60.75140.24840.22600.072*
C90.6108 (3)0.2557 (3)0.18749 (19)0.0594 (11)
H70.59320.33350.20390.071*
H80.58350.25210.14680.071*
C100.5605 (3)0.1597 (4)0.22441 (18)0.0576 (10)
H90.49380.18730.23650.069*
H100.60100.14510.26060.069*
C110.4605 (3)0.0025 (3)0.18742 (15)0.0431 (8)
H110.40890.04550.20590.052*
C120.4305 (2)0.1090 (3)0.15813 (14)0.0368 (7)
C130.3254 (3)0.1336 (4)0.15613 (16)0.0482 (9)
H120.28010.07780.17150.058*
C140.2889 (3)0.2375 (4)0.13210 (18)0.0530 (9)
H130.21900.25150.13020.064*
C150.3559 (3)0.3222 (3)0.11042 (16)0.0459 (8)
H140.33140.39410.09460.055*
C160.4587 (2)0.3001 (3)0.11238 (14)0.0368 (7)
C170.4991 (2)0.1913 (3)0.13444 (13)0.0322 (6)
C180.5015 (3)0.5034 (3)0.0877 (2)0.0700 (13)
H150.45750.51320.05320.105*
H160.56080.55300.08350.105*
H170.46580.52650.12330.105*
C190.9595 (3)0.3228 (4)0.0049 (2)0.0700 (13)
H181.01060.36590.02750.105*
H190.91450.37880.01480.105*
H200.99170.27360.02470.105*
C200.6496 (3)0.0934 (4)0.01313 (18)0.0659 (12)
H220.71230.05030.00810.099*
H230.60610.08070.02140.099*
H240.66390.17750.01730.099*
C210.6865 (4)0.1415 (5)0.2730 (2)0.0808 (15)
H260.62870.18290.25600.121*
H270.73150.19840.29200.121*
H280.66380.08450.30230.121*
C220.0864 (6)0.5031 (8)0.1513 (3)0.149 (3)
H300.05800.43860.12790.223*
H310.14060.54030.12960.223*
H320.03440.56140.15910.223*
C230.0337 (5)0.1674 (7)0.2229 (3)0.117 (2)
H340.09750.14170.24020.175*
H350.03920.17130.18000.175*
H360.01870.11130.23330.175*
La10.716978 (13)0.298199 (16)0.077571 (8)0.03422 (6)
N10.7614 (2)0.1353 (2)0.15504 (12)0.0418 (6)
N20.5498 (2)0.0480 (2)0.19058 (12)0.0390 (6)
N30.7794 (3)0.3947 (3)0.20112 (16)0.0617 (9)
N40.7756 (3)0.5503 (3)0.03456 (19)0.0611 (9)
N50.6410 (3)0.2140 (3)0.04698 (17)0.0621 (9)
Ni20.67227 (3)0.01383 (3)0.146167 (17)0.03239 (10)
O10.78086 (15)0.09678 (19)0.09686 (10)0.0356 (5)
O20.90251 (18)0.2485 (2)0.04465 (11)0.0470 (6)
O30.59889 (15)0.17423 (19)0.13315 (10)0.0356 (5)
O40.53172 (17)0.3812 (2)0.09263 (11)0.0443 (6)
O50.6940 (2)0.4204 (3)0.17893 (15)0.0735 (9)
O60.8089 (3)0.4327 (4)0.24951 (17)0.1125 (15)
O70.8346 (2)0.3244 (3)0.17146 (13)0.0589 (7)
O80.8196 (3)0.5040 (3)0.07811 (17)0.0959 (12)
O90.7975 (3)0.6493 (3)0.0170 (2)0.1064 (14)
O100.7118 (3)0.4850 (3)0.00799 (18)0.0955 (12)
O110.5842 (2)0.2296 (3)0.00488 (15)0.0778 (9)
O120.6076 (3)0.1809 (4)0.09563 (17)0.1162 (16)
O130.7331 (3)0.2290 (4)0.03695 (16)0.0968 (12)
O140.60041 (19)0.0515 (2)0.06531 (11)0.0509 (6)
H210.54120.08230.06660.061*
O150.73884 (19)0.0805 (2)0.22691 (11)0.0502 (6)
H250.78420.04020.24570.060*
O160.1250 (4)0.4577 (4)0.2063 (2)0.1259 (17)
H290.18880.44940.20180.151*
O170.0099 (4)0.2770 (5)0.2444 (3)0.147 (2)
H330.01690.32010.21330.177*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0312 (15)0.0446 (18)0.0340 (16)0.0024 (14)0.0012 (12)0.0059 (14)
C20.0315 (16)0.0459 (19)0.0431 (18)0.0004 (15)0.0033 (14)0.0053 (15)
C30.0344 (17)0.067 (3)0.060 (2)0.0023 (18)0.0070 (16)0.012 (2)
C40.0324 (18)0.081 (3)0.080 (3)0.011 (2)0.0056 (19)0.008 (2)
C50.049 (2)0.060 (2)0.067 (3)0.020 (2)0.0034 (19)0.006 (2)
C60.0384 (17)0.0447 (19)0.0462 (19)0.0099 (15)0.0024 (15)0.0058 (15)
C70.053 (2)0.0370 (18)0.0453 (19)0.0136 (16)0.0050 (16)0.0010 (15)
C80.072 (3)0.0383 (19)0.070 (3)0.008 (2)0.003 (2)0.0148 (19)
C90.079 (3)0.0354 (18)0.063 (3)0.013 (2)0.009 (2)0.0147 (18)
C100.057 (2)0.057 (2)0.059 (2)0.007 (2)0.0079 (19)0.028 (2)
C110.0400 (17)0.050 (2)0.0393 (18)0.0118 (16)0.0064 (14)0.0010 (15)
C120.0349 (15)0.0425 (17)0.0330 (16)0.0029 (15)0.0039 (12)0.0029 (14)
C130.0346 (17)0.060 (2)0.050 (2)0.0089 (17)0.0062 (15)0.0038 (18)
C140.0301 (17)0.069 (3)0.060 (2)0.0017 (18)0.0024 (16)0.001 (2)
C150.0372 (17)0.052 (2)0.049 (2)0.0082 (16)0.0002 (15)0.0011 (16)
C160.0319 (15)0.0423 (17)0.0363 (16)0.0011 (15)0.0025 (12)0.0015 (14)
C170.0310 (14)0.0381 (16)0.0277 (14)0.0014 (13)0.0022 (11)0.0043 (12)
C180.055 (2)0.035 (2)0.121 (4)0.0074 (18)0.007 (3)0.003 (2)
C190.061 (3)0.060 (3)0.090 (3)0.007 (2)0.034 (2)0.010 (2)
C200.070 (3)0.076 (3)0.052 (2)0.001 (2)0.003 (2)0.021 (2)
C210.098 (4)0.085 (3)0.060 (3)0.016 (3)0.001 (3)0.020 (3)
C220.155 (7)0.177 (8)0.112 (6)0.019 (6)0.064 (5)0.007 (5)
C230.092 (5)0.143 (7)0.115 (5)0.007 (5)0.012 (4)0.039 (5)
La10.03002 (9)0.03160 (10)0.04102 (11)0.00190 (8)0.00050 (7)0.00396 (8)
N10.0503 (17)0.0328 (14)0.0423 (16)0.0019 (13)0.0010 (13)0.0016 (12)
N20.0446 (15)0.0386 (14)0.0339 (14)0.0070 (13)0.0011 (12)0.0049 (11)
N30.067 (2)0.062 (2)0.056 (2)0.0094 (19)0.0026 (17)0.0179 (18)
N40.0447 (18)0.0439 (18)0.095 (3)0.0017 (15)0.0128 (18)0.0207 (19)
N50.058 (2)0.068 (2)0.059 (2)0.0034 (19)0.0150 (18)0.0095 (18)
Ni20.0339 (2)0.03021 (19)0.0331 (2)0.00145 (17)0.00085 (15)0.00297 (16)
O10.0286 (10)0.0347 (11)0.0436 (12)0.0027 (9)0.0029 (9)0.0027 (10)
O20.0375 (12)0.0459 (13)0.0578 (15)0.0013 (11)0.0123 (11)0.0073 (12)
O30.0284 (10)0.0345 (11)0.0439 (12)0.0007 (9)0.0029 (9)0.0058 (9)
O40.0358 (12)0.0323 (12)0.0648 (16)0.0040 (10)0.0035 (11)0.0042 (11)
O50.0490 (16)0.088 (2)0.084 (2)0.0074 (16)0.0002 (15)0.0301 (18)
O60.099 (3)0.156 (4)0.081 (3)0.001 (3)0.018 (2)0.066 (3)
O70.0612 (17)0.0586 (17)0.0564 (16)0.0114 (14)0.0124 (13)0.0126 (13)
O80.132 (3)0.067 (2)0.087 (3)0.038 (2)0.028 (2)0.0169 (19)
O90.074 (2)0.056 (2)0.189 (4)0.0085 (18)0.007 (2)0.056 (2)
O100.088 (2)0.084 (2)0.113 (3)0.0284 (19)0.031 (2)0.050 (2)
O110.0567 (17)0.114 (3)0.0626 (18)0.0191 (18)0.0022 (15)0.0078 (18)
O120.107 (3)0.165 (4)0.076 (3)0.007 (3)0.033 (2)0.049 (3)
O130.064 (2)0.153 (4)0.073 (2)0.011 (2)0.0007 (17)0.035 (2)
O140.0452 (13)0.0647 (16)0.0429 (14)0.0058 (13)0.0006 (11)0.0085 (12)
O150.0513 (14)0.0556 (15)0.0436 (13)0.0066 (13)0.0059 (11)0.0066 (12)
O160.134 (4)0.129 (4)0.113 (3)0.016 (3)0.068 (3)0.004 (3)
O170.117 (4)0.135 (4)0.187 (6)0.001 (3)0.069 (4)0.005 (4)
Geometric parameters (Å, º) top
C1—O11.334 (4)C20—O141.417 (4)
C1—C61.405 (5)C20—H220.9600
C1—C21.405 (5)C20—H230.9600
C2—C31.370 (5)C20—H240.9600
C2—O21.386 (4)C21—O151.417 (5)
C3—C41.378 (6)C21—H260.9600
C3—H10.9300C21—H270.9600
C4—C51.361 (6)C21—H280.9600
C4—H20.9300C22—O161.410 (7)
C5—C61.412 (5)C22—H300.9600
C5—H30.9300C22—H310.9600
C6—C71.445 (5)C22—H320.9600
C7—N11.276 (4)C23—O171.349 (6)
C7—H40.9300C23—H340.9600
C8—C91.491 (6)C23—H350.9600
C8—N11.493 (5)C23—H360.9600
C8—H50.9700La1—O32.429 (2)
C8—H60.9700La1—O12.431 (2)
C9—C101.507 (6)La1—O102.594 (3)
C9—H70.9700La1—O72.594 (3)
C9—H80.9700La1—O22.613 (2)
C10—N21.460 (4)La1—O112.623 (3)
C10—H90.9700La1—O42.628 (2)
C10—H100.9700La1—O52.655 (3)
C11—N21.278 (4)La1—O82.659 (3)
C11—C121.455 (5)La1—O132.673 (4)
C11—H110.9300La1—Ni23.5692 (10)
C12—C171.394 (4)N1—Ni22.040 (3)
C12—C131.406 (5)N2—Ni22.022 (3)
C13—C141.359 (6)N3—O61.214 (4)
C13—H120.9300N3—O51.251 (4)
C14—C151.383 (5)N3—O71.261 (4)
C14—H130.9300N4—O91.207 (4)
C15—C161.371 (4)N4—O81.233 (5)
C15—H140.9300N4—O101.250 (5)
C16—O41.394 (4)N5—O121.218 (4)
C16—C171.408 (4)N5—O111.218 (5)
C17—O31.324 (3)N5—O131.238 (5)
C18—O41.421 (4)Ni2—O12.034 (2)
C18—H150.9600Ni2—O32.048 (2)
C18—H160.9600Ni2—O152.119 (2)
C18—H170.9600Ni2—O142.145 (2)
C19—O21.431 (4)O14—H210.8500
C19—H180.9600O15—H250.8501
C19—H190.9600O16—H290.8500
C19—H200.9600O17—H330.8501
O1—C1—C6123.5 (3)O1—La1—O1194.47 (10)
O1—C1—C2118.9 (3)O10—La1—O1178.79 (12)
C6—C1—C2117.6 (3)O7—La1—O11167.40 (10)
C3—C2—O2123.7 (3)O2—La1—O11110.72 (10)
C3—C2—C1122.5 (3)O3—La1—O462.36 (7)
O2—C2—C1113.8 (3)O1—La1—O4128.28 (7)
C2—C3—C4119.5 (4)O10—La1—O477.19 (10)
C2—C3—H1120.2O7—La1—O4113.45 (9)
C4—C3—H1120.2O2—La1—O4168.09 (7)
C5—C4—C3120.0 (4)O11—La1—O465.55 (10)
C5—C4—H2120.0O3—La1—O577.13 (9)
C3—C4—H2120.0O1—La1—O5111.52 (9)
C4—C5—C6121.8 (4)O10—La1—O595.35 (13)
C4—C5—H3119.1O7—La1—O548.14 (9)
C6—C5—H3119.1O2—La1—O5117.74 (9)
C1—C6—C5118.6 (3)O11—La1—O5131.30 (10)
C1—C6—C7124.3 (3)O4—La1—O566.02 (8)
C5—C6—C7117.1 (3)O3—La1—O8144.62 (11)
N1—C7—C6129.0 (3)O1—La1—O8128.46 (11)
N1—C7—H4115.5O10—La1—O847.10 (11)
C6—C7—H4115.5O7—La1—O866.71 (10)
C9—C8—N1114.1 (3)O2—La1—O873.12 (11)
C9—C8—H5108.7O11—La1—O8125.80 (11)
N1—C8—H5108.7O4—La1—O899.53 (11)
C9—C8—H6108.7O5—La1—O867.57 (12)
N1—C8—H6108.7O3—La1—O13112.47 (10)
H5—C8—H6107.6O1—La1—O1382.52 (11)
C8—C9—C10114.4 (4)O10—La1—O1370.38 (14)
C8—C9—H7108.7O7—La1—O13138.12 (10)
C10—C9—H7108.7O2—La1—O1365.38 (10)
C8—C9—H8108.7O11—La1—O1346.49 (10)
C10—C9—H8108.7O4—La1—O13108.09 (10)
H7—C9—H8107.6O5—La1—O13165.67 (13)
N2—C10—C9111.3 (3)O8—La1—O13101.83 (13)
N2—C10—H9109.4O3—La1—Ni233.59 (5)
C9—C10—H9109.4O1—La1—Ni233.26 (5)
N2—C10—H10109.4O10—La1—Ni2164.67 (8)
C9—C10—H10109.4O7—La1—Ni281.68 (7)
H9—C10—H10108.0O2—La1—Ni295.28 (6)
N2—C11—C12127.2 (3)O11—La1—Ni285.90 (8)
N2—C11—H11116.4O4—La1—Ni295.69 (5)
C12—C11—H11116.4O5—La1—Ni294.03 (8)
C17—C12—C13119.9 (3)O8—La1—Ni2148.23 (8)
C17—C12—C11124.0 (3)O13—La1—Ni299.65 (10)
C13—C12—C11116.0 (3)C7—N1—C8114.4 (3)
C14—C13—C12121.2 (3)C7—N1—Ni2123.7 (2)
C14—C13—H12119.4C8—N1—Ni2121.7 (2)
C12—C13—H12119.4C11—N2—C10116.6 (3)
C13—C14—C15119.7 (3)C11—N2—Ni2125.0 (2)
C13—C14—H13120.1C10—N2—Ni2118.1 (2)
C15—C14—H13120.1O6—N3—O5122.7 (4)
C16—C15—C14119.8 (3)O6—N3—O7120.2 (4)
C16—C15—H14120.1O5—N3—O7117.0 (3)
C14—C15—H14120.1O9—N4—O8121.7 (4)
C15—C16—O4123.7 (3)O9—N4—O10122.7 (4)
C15—C16—C17122.1 (3)O8—N4—O10115.5 (3)
O4—C16—C17114.3 (3)O12—N5—O11120.7 (4)
O3—C17—C12124.0 (3)O12—N5—O13122.5 (4)
O3—C17—C16118.9 (3)O11—N5—O13116.7 (4)
C12—C17—C16117.1 (3)N2—Ni2—O1171.07 (10)
O4—C18—H15109.5N2—Ni2—N197.73 (12)
O4—C18—H16109.5O1—Ni2—N190.95 (10)
H15—C18—H16109.5N2—Ni2—O389.47 (10)
O4—C18—H17109.5O1—Ni2—O381.91 (8)
H15—C18—H17109.5N1—Ni2—O3172.70 (10)
H16—C18—H17109.5N2—Ni2—O1591.47 (10)
O2—C19—H18109.5O1—Ni2—O1590.85 (10)
O2—C19—H19109.5N1—Ni2—O1588.59 (11)
H18—C19—H19109.5O3—Ni2—O1590.02 (10)
O2—C19—H20109.5N2—Ni2—O1487.22 (10)
H18—C19—H20109.5O1—Ni2—O1490.25 (9)
H19—C19—H20109.5N1—Ni2—O1492.79 (11)
O14—C20—H22109.5O3—Ni2—O1488.74 (10)
O14—C20—H23109.5O15—Ni2—O14178.21 (10)
H22—C20—H23109.5N2—Ni2—La1130.47 (8)
O14—C20—H24109.5O1—Ni2—La140.96 (6)
H22—C20—H24109.5N1—Ni2—La1131.79 (8)
H23—C20—H24109.5O3—Ni2—La141.00 (6)
O15—C21—H26109.5O15—Ni2—La189.01 (7)
O15—C21—H27109.5O14—Ni2—La190.90 (8)
H26—C21—H27109.5C1—O1—Ni2126.7 (2)
O15—C21—H28109.5C1—O1—La1124.71 (19)
H26—C21—H28109.5Ni2—O1—La1105.78 (8)
H27—C21—H28109.5C2—O2—C19117.9 (3)
O16—C22—H30109.5C2—O2—La1118.70 (19)
O16—C22—H31109.5C19—O2—La1123.3 (2)
H30—C22—H31109.5C17—O3—Ni2125.81 (19)
O16—C22—H32109.5C17—O3—La1124.66 (18)
H30—C22—H32109.5Ni2—O3—La1105.41 (9)
H31—C22—H32109.5C16—O4—C18116.9 (3)
O17—C23—H34109.5C16—O4—La1117.03 (18)
O17—C23—H35109.5C18—O4—La1125.8 (2)
H34—C23—H35109.5N3—O5—La196.0 (2)
O17—C23—H36109.5N3—O7—La198.7 (2)
H34—C23—H36109.5N4—O8—La197.2 (2)
H35—C23—H36109.5N4—O10—La1100.0 (2)
O3—La1—O166.81 (7)N5—O11—La199.9 (2)
O3—La1—O10138.52 (10)N5—O13—La196.8 (3)
O1—La1—O10148.37 (11)C20—O14—Ni2126.8 (2)
O3—La1—O791.75 (9)C20—O14—H21108.8
O1—La1—O776.26 (8)Ni2—O14—H21119.9
O10—La1—O7113.57 (11)C21—O15—Ni2125.7 (3)
O3—La1—O2128.84 (7)C21—O15—H25104.0
O1—La1—O262.21 (7)Ni2—O15—H25120.5
O10—La1—O291.05 (11)C22—O16—H29106.2
O7—La1—O272.79 (9)C23—O17—H33101.2
O3—La1—O1176.60 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O17—H33···O160.852.102.665 (7)124
O15—H25···O16i0.851.832.681 (5)174
O14—H21···O12ii0.852.343.169 (5)165
O16—H29···O15iii0.852.352.681 (5)104
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[NiLa(C19H20N2O4)(NO3)3(CH3OH)2]·2CH3OH
Mr852.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)13.123 (4), 11.141 (3), 22.245 (8)
β (°) 90.911 (13)
V3)3252.0 (17)
Z4
Radiation typeMo Kα
µ (mm1)1.96
Crystal size (mm)0.30 × 0.27 × 0.25
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.594, 0.635
No. of measured, independent and
observed [I > 2σ(I)] reflections
29897, 7431, 6035
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.078, 1.07
No. of reflections7431
No. of parameters430
No. of restraints19
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.56

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O17—H33···O160.852.102.665 (7)124
O15—H25···O16i0.851.832.681 (5)174
O14—H21···O12ii0.852.343.169 (5)165
O16—H29···O15iii0.852.352.681 (5)104
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The author gratefully acknowledges financial support from the Education Department of Liaoning Province (2006 B 112) and Liaoning University.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, F. & Zhang, F. (2008). Acta Cryst. E64, m589.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-H., Gao, P., Yan, P.-F., Li, G.-M. & Hou, G.-F. (2008). Acta Cryst. E64, m344.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds