metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1171-m1172

Bis(μ-bi­phenyl-2,2′-di­carboxyl­ato)bis­­[(2,2′-bi­pyridine)copper(II)]

aDepartment of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou, Fujian 363000, People's Republic of China
*Correspondence e-mail: ghx919@yahoo.com.cn

(Received 3 August 2008; accepted 11 August 2008; online 16 August 2008)

The title compound, [Cu2(C14H8O4)2(C10H8N2)2], is a centrosymmetric binuclear copper(II) complex, with a Cu⋯Cu separation of 6.136 (16) Å. The Cu atom displays a cis-CuN2O2 square-planar geometry, although two long (> 2.43 Å) Cu⋯O contacts complete a distorted cis-CuN2O4 octa­hedron. Extensive C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For related literature, see: Bu et al. (2004[Bu, X. H., Tong, M. L., Chang, H. C., Kitagawa, S. & Batten, S. R. (2004). Angew. Chem. Int. Ed. 43, 192-195.]); He et al. (2007[He, H.-Y., Zhou, Y.-L. & Gao, J. (2007). Acta Cryst. E63, m2007.]); Huang et al. (2004[Huang, X. C., Zhang, J. P., Lin, Y. Y., Yu, X. L. & Chen, X. M. (2004). Chem. Commun. pp. 1100-1101.]); Long et al. (2001[Long, L. S., Chen, X. M., Tong, M. L., Sun, Z. G., Ren, Y. P., Huang, R. B. & Zheng, L. S. (2001). J. Chem. Soc. Dalton Trans. pp. 2888-2890.]); Ma et al. (2003[Ma, B. Q., Sun, H. L. & Gao, S. (2003). Chem. Commun. pp. 2164-2165.]); Rao et al. (2004[Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1496.]); Yaghi et al. (2003[Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705-714.]); Yang et al. (2002[Yang, S. Y., Long, L. S., Jiang, Y. B., Huang, R. B. & Zheng, L. S. (2002). Chem. Mater. 14, 3229-3230.]); Zhang et al. (2004[Zhang, J. P., Zheng, S. L., Huang, X. C. & Chen, X. M. (2004). Angew. Chem. Int. Ed. 43, 206-209.]); Zhu et al. (2001[Zhu, H. L., Tong, Y. X. & Chen, X. M. (2001). Transition Met. Chem. 26, 528-531.]); He & Zhu (2003[He, H.-Y. & Zhu, L.-G. (2003). Acta Cryst. E59, o174-o176.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C14H8O4)2(C10H8N2)2]

  • Mr = 1839.75

  • Monoclinic, P 21 /c

  • a = 11.234 (2) Å

  • b = 13.336 (3) Å

  • c = 15.431 (6) Å

  • β = 122.16 (2)°

  • V = 1957.1 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.15 mm−1

  • T = 293 (2) K

  • 0.40 × 0.26 × 0.23 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.708, Tmax = 0.771

  • 18687 measured reflections

  • 4472 independent reflections

  • 3708 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.118

  • S = 1.03

  • 4472 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.9640 (15)
Cu1—O4i 1.9725 (16)
Cu1—N2 1.9814 (19)
Cu1—N1 1.9897 (19)
Cu1—O2 2.434 (2)
Cu1—O3i 2.557 (2)
O1—Cu1—O4i 93.92 (7)
O1—Cu1—N2 162.77 (7)
O4i—Cu1—N2 95.38 (8)
O1—Cu1—N1 94.56 (7)
O4i—Cu1—N1 160.15 (7)
N2—Cu1—N1 81.35 (8)
Symmetry code: (i) -x+1, -y, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O1 0.93 2.58 3.081 (3) 114
C4—H4A⋯O4ii 0.93 2.59 3.378 (3) 143
C5—H5A⋯O4ii 0.93 2.51 3.304 (4) 144
C6—H6A⋯O3iii 0.93 2.25 3.162 (3) 166
C16—H16A⋯O2iv 0.93 2.48 3.192 (3) 133
C19—H19A⋯O4 0.93 2.45 2.761 (3) 100
Symmetry codes: (ii) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1994[Siemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1994[Siemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Design and assembly of metal-involved supramolecular architectures are currently of great interest in the field of supramolecular chemistry and crystal engineering because they can provide novel topology and functional materials (Yaghi et al.,2003; Rao et al.,2004). During the past decades, extensive efforts have been focused on the design and assembly of such kinds of supramolecular architectures (Huang et al.,2004; Zhang et al., 2004). By precisely selecting the modular building unit, chemists now have successfully synthesized a great variety of one-dimensional, two-dimensional, and three-dimensional supramolecular architectures (Bu et al., 2004; Ma et al., 2003; Yang et al., 2002; Long et al., 2001). Binuclear copper(II) complexes have been intensely investigated owing to their potential application as magnetic materials and catalysts (Zhu et al., 2001).In this work, we employed H2dpa (dpa = diphenyl-2,2'-dicarboxylato dianion) and 2,2'-bipyridine(bipy) ligands for producing a binuclear complex, [Cu2(C14H8O4)2(C10H8N2)2].

The compound contains a centrosymmetric binuclear complex. The copper(II) atom in the title compound adopts a distorted square geometry (Table 1, Fig. 1). The bipy ligand shows its classical bidentate coordination mode, with a similar Cu—N bond length to that the related complex [Cu2(C14H8O4)2(C10H8N2)2].4H2O (He et al., 2007). The dpa ligand adopts a µ-bridged coordination and the dihedral angle between its aromatic rings is 78.27°. As well as the short Cu—O bonds, two long Cu—O (Cu(1)—O(2): 2.434 (44) Å; Cu(1)—O(3):2.557 (31) Å) contacts that might be regarded as secondary bonds (He & Zhu, 2003) complete a distorted octahedron. The Cu···Cui (i = 1 - x, -y, -z) distance bridged by the dpa ligands is 6.136 (16) Å. Extensive C—H···O hydrogen bonds link molecules into a three-dimensional network.(Table 2, Fig.2).

Related literature top

For related literature, see: Bu et al. (2004); He et al. (2007); Huang et al. (2004); Long et al. (2001); Ma et al. (2003); Rao et al. (2004); Yaghi et al. (2003); Yang et al. (2002); Zhang et al. (2004); Zhu et al. (2001); He & Zhu (2003).

Experimental top

A solution of Cu(NO3)2.6H2O(0.0705 g) in 5 ml of water was added dropwise under continuous stirring to an aqueous solution (5 ml) of diphenyl-2,2'-dicarboxylic acid (0.0734 g) and 2,2'-bipyridine (0.0312 g). The resulting mixture was then transferred into a 25 ml Teflon-lined stainless steel vessel, which was sealed and heated to 423 K for 72 h, then cooled to room temperature. The block blue single crystals were obtained.

Refinement top

The phenyl H atoms were positioned geometrically and allowed to ride during subsequent refinement, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1994); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the structure of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level; H-atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. View of the 3D hydrogen-bonded network in the packing of the title compound.The packing is viewed along the b axis; C—H···O interactions are shown as dashed lines.
Bis(µ-biphenyl-2,2'-dicarboxylato)bis[(2,2'-bipyridine)copper(II)] top
Crystal data top
[Cu2(C14H8O4)2(C10H8N2)2]F(000) = 940
Mr = 1839.75Dx = 1.561 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 19150 reflections
a = 11.234 (2) Åθ = 3.1–27.4°
b = 13.336 (3) ŵ = 1.15 mm1
c = 15.431 (6) ÅT = 293 K
β = 122.16 (2)°Block, blue
V = 1957.1 (9) Å30.40 × 0.26 × 0.23 mm
Z = 2
Data collection top
Siemens SMART CCD area-detector
diffractometer
4472 independent reflections
Radiation source: fine-focus sealed tube3708 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scansθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.708, Tmax = 0.771k = 1717
18687 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.08P)2]
where P = (Fo2 + 2Fc2)/3
4472 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Cu2(C14H8O4)2(C10H8N2)2]V = 1957.1 (9) Å3
Mr = 1839.75Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.234 (2) ŵ = 1.15 mm1
b = 13.336 (3) ÅT = 293 K
c = 15.431 (6) Å0.40 × 0.26 × 0.23 mm
β = 122.16 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
4472 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3708 reflections with I > 2σ(I)
Tmin = 0.708, Tmax = 0.771Rint = 0.046
18687 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
4472 reflectionsΔρmin = 0.60 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.63909 (3)0.160660 (19)0.059678 (18)0.02914 (12)
O10.70349 (16)0.04363 (11)0.03157 (11)0.0354 (4)
O20.8638 (2)0.16096 (12)0.10287 (15)0.0530 (5)
O30.62962 (19)0.15631 (14)0.16045 (14)0.0480 (5)
O40.47467 (16)0.21452 (12)0.00754 (11)0.0374 (4)
N10.68794 (18)0.10223 (14)0.15551 (13)0.0320 (4)
N20.63566 (18)0.28542 (14)0.13069 (14)0.0331 (4)
C10.7186 (2)0.00573 (19)0.15928 (18)0.0406 (5)
H1A0.72270.03900.11150.049*
C20.7441 (3)0.0289 (2)0.2320 (2)0.0504 (7)
H2A0.76640.09590.23270.060*
C30.7361 (3)0.0368 (2)0.3032 (2)0.0531 (7)
H3A0.75140.01450.35360.064*
C40.7051 (3)0.1367 (2)0.29961 (19)0.0462 (6)
H4A0.70020.18230.34700.055*
C50.6486 (3)0.3529 (2)0.2682 (2)0.0487 (7)
H5A0.65660.34290.32460.058*
C60.6319 (3)0.4472 (2)0.2420 (3)0.0585 (8)
H6A0.62960.50220.28000.070*
C70.6184 (3)0.4608 (2)0.1591 (2)0.0540 (7)
H7A0.60970.52480.13920.065*
C80.6181 (3)0.37789 (19)0.1068 (2)0.0444 (6)
H8A0.60530.38650.05250.053*
C90.6815 (2)0.16746 (17)0.22479 (17)0.0332 (5)
C100.6534 (2)0.27237 (17)0.20994 (17)0.0337 (5)
C110.8922 (2)0.08967 (16)0.20040 (15)0.0278 (4)
C120.8946 (2)0.01519 (16)0.20175 (15)0.0281 (4)
C130.9639 (2)0.06631 (17)0.29523 (16)0.0346 (5)
H13A0.96810.13600.29590.042*
C141.0260 (2)0.0142 (2)0.38647 (16)0.0405 (5)
H14A1.07030.04860.44840.049*
C151.0221 (2)0.0895 (2)0.38529 (17)0.0419 (6)
H15A1.06360.12490.44660.050*
C160.9568 (2)0.14064 (17)0.29350 (18)0.0365 (5)
H16A0.95590.21040.29370.044*
C170.8383 (2)0.14901 (14)0.10351 (17)0.0282 (4)
C180.7102 (2)0.19898 (15)0.04996 (16)0.0292 (4)
C190.6773 (2)0.25507 (18)0.03716 (18)0.0369 (5)
H19A0.59200.28900.07270.044*
C200.7682 (3)0.26123 (18)0.07140 (19)0.0412 (5)
H20A0.74460.29910.12900.049*
C210.8951 (2)0.21017 (18)0.01881 (19)0.0400 (5)
H21A0.95730.21310.04120.048*
C220.9287 (3)0.15476 (17)0.06719 (19)0.0366 (5)
H22A1.01370.12040.10180.044*
C230.8187 (2)0.07766 (15)0.10614 (16)0.0300 (4)
C240.5999 (2)0.18908 (16)0.07706 (17)0.0309 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03431 (18)0.02951 (18)0.02666 (17)0.00125 (10)0.01828 (13)0.00287 (9)
O10.0386 (8)0.0330 (8)0.0287 (8)0.0015 (7)0.0138 (7)0.0053 (6)
O20.0586 (12)0.0359 (10)0.0433 (10)0.0155 (8)0.0128 (9)0.0077 (7)
O30.0446 (10)0.0630 (12)0.0467 (11)0.0160 (8)0.0313 (9)0.0260 (8)
O40.0328 (8)0.0494 (10)0.0328 (8)0.0021 (7)0.0193 (7)0.0047 (7)
N10.0321 (9)0.0371 (10)0.0286 (9)0.0026 (8)0.0174 (8)0.0026 (8)
N20.0323 (9)0.0339 (10)0.0325 (9)0.0008 (8)0.0168 (8)0.0031 (8)
C10.0441 (13)0.0396 (13)0.0410 (13)0.0049 (11)0.0247 (11)0.0004 (10)
C20.0523 (15)0.0506 (16)0.0521 (16)0.0115 (13)0.0304 (13)0.0044 (12)
C30.0485 (15)0.075 (2)0.0423 (14)0.0104 (14)0.0288 (12)0.0046 (13)
C40.0412 (13)0.0684 (17)0.0339 (12)0.0086 (12)0.0233 (11)0.0095 (12)
C50.0477 (15)0.0549 (17)0.0515 (16)0.0021 (12)0.0317 (13)0.0170 (12)
C60.0578 (17)0.0476 (16)0.074 (2)0.0064 (13)0.0380 (16)0.0293 (15)
C70.0522 (16)0.0322 (13)0.076 (2)0.0053 (12)0.0327 (15)0.0113 (12)
C80.0475 (14)0.0354 (13)0.0500 (15)0.0028 (11)0.0259 (12)0.0028 (11)
C90.0253 (10)0.0467 (13)0.0273 (11)0.0003 (9)0.0138 (9)0.0040 (9)
C100.0268 (10)0.0414 (13)0.0313 (11)0.0001 (9)0.0144 (9)0.0076 (9)
C110.0261 (9)0.0282 (10)0.0298 (10)0.0002 (8)0.0154 (8)0.0003 (8)
C120.0282 (10)0.0304 (11)0.0269 (10)0.0008 (8)0.0154 (8)0.0001 (8)
C130.0383 (12)0.0330 (11)0.0337 (11)0.0039 (9)0.0199 (10)0.0056 (9)
C140.0416 (13)0.0515 (14)0.0261 (11)0.0053 (11)0.0166 (10)0.0062 (10)
C150.0418 (12)0.0521 (15)0.0258 (11)0.0020 (11)0.0139 (10)0.0096 (10)
C160.0386 (12)0.0322 (11)0.0365 (12)0.0003 (9)0.0184 (10)0.0055 (9)
C170.0328 (11)0.0243 (10)0.0302 (11)0.0037 (8)0.0186 (9)0.0015 (8)
C180.0345 (11)0.0242 (10)0.0320 (11)0.0024 (9)0.0198 (9)0.0004 (8)
C190.0403 (12)0.0332 (12)0.0382 (12)0.0040 (10)0.0215 (10)0.0099 (10)
C200.0530 (14)0.0362 (12)0.0422 (13)0.0049 (11)0.0305 (11)0.0083 (10)
C210.0462 (13)0.0398 (13)0.0487 (14)0.0066 (11)0.0352 (12)0.0014 (11)
C220.0339 (12)0.0389 (13)0.0394 (13)0.0010 (9)0.0211 (10)0.0007 (9)
C230.0357 (11)0.0280 (11)0.0294 (10)0.0010 (9)0.0194 (9)0.0010 (8)
C240.0346 (11)0.0257 (10)0.0360 (11)0.0013 (9)0.0211 (9)0.0030 (9)
Geometric parameters (Å, º) top
Cu1—O11.9640 (15)C6—H6A0.9300
Cu1—O4i1.9725 (16)C7—C81.370 (4)
Cu1—N21.9814 (19)C7—H7A0.9300
Cu1—N11.9897 (19)C8—H8A0.9300
Cu1—O22.434 (2)C9—C101.479 (3)
Cu1—C232.519 (2)C11—C161.394 (3)
Cu1—O3i2.557 (2)C11—C121.399 (3)
Cu1—C24i2.580 (2)C11—C171.505 (3)
O1—C231.273 (2)C12—C131.399 (3)
O2—C231.233 (3)C12—C231.503 (3)
O3—C241.225 (3)C13—C141.381 (3)
O3—Cu1i2.5567 (19)C13—H13A0.9300
O4—C241.280 (3)C14—C151.383 (4)
O4—Cu1i1.9725 (16)C14—H14A0.9300
N1—C11.342 (3)C15—C161.380 (3)
N1—C91.350 (3)C15—H15A0.9300
N2—C81.331 (3)C16—H16A0.9300
N2—C101.351 (3)C17—C181.390 (3)
C1—C21.377 (3)C17—C221.399 (3)
C1—H1A0.9300C18—C191.405 (3)
C2—C31.372 (4)C18—C241.509 (3)
C2—H2A0.9300C19—C201.379 (3)
C3—C41.385 (4)C19—H19A0.9300
C3—H3A0.9300C20—C211.387 (3)
C4—C91.377 (3)C20—H20A0.9300
C4—H4A0.9300C21—C221.384 (3)
C5—C61.365 (4)C21—H21A0.9300
C5—C101.383 (3)C22—H22A0.9300
C5—H5A0.9300C24—Cu1i2.580 (2)
C6—C71.378 (5)
O1—Cu1—O4i93.92 (7)C6—C7—H7A120.8
O1—Cu1—N2162.77 (7)N2—C8—C7122.5 (3)
O4i—Cu1—N295.38 (8)N2—C8—H8A118.8
O1—Cu1—N194.56 (7)C7—C8—H8A118.8
O4i—Cu1—N1160.15 (7)N1—C9—C4121.3 (2)
N2—Cu1—N181.35 (8)N1—C9—C10114.4 (2)
O1—Cu1—O258.55 (6)C4—C9—C10124.3 (2)
O4i—Cu1—O296.94 (8)N2—C10—C5121.0 (2)
N2—Cu1—O2105.83 (7)N2—C10—C9114.12 (19)
N1—Cu1—O2102.80 (8)C5—C10—C9124.9 (2)
O1—Cu1—C2329.83 (6)C16—C11—C12118.49 (19)
O4i—Cu1—C2395.07 (7)C16—C11—C17118.75 (19)
N2—Cu1—C23134.42 (7)C12—C11—C17122.34 (18)
N1—Cu1—C23101.19 (7)C11—C12—C13119.90 (19)
O2—Cu1—C2328.76 (6)C11—C12—C23122.91 (18)
O1—Cu1—O3i106.45 (7)C13—C12—C23117.11 (19)
O4i—Cu1—O3i56.28 (6)C14—C13—C12120.5 (2)
N2—Cu1—O3i90.78 (7)C14—C13—H13A119.7
N1—Cu1—O3i104.04 (7)C12—C13—H13A119.7
O2—Cu1—O3i150.22 (7)C13—C14—C15119.7 (2)
C23—Cu1—O3i130.98 (7)C13—C14—H14A120.2
O1—Cu1—C24i99.04 (7)C15—C14—H14A120.2
O4i—Cu1—C24i28.92 (6)C16—C15—C14120.2 (2)
N2—Cu1—C24i96.11 (7)C16—C15—H15A119.9
N1—Cu1—C24i131.58 (7)C14—C15—H15A119.9
O2—Cu1—C24i123.91 (8)C15—C16—C11121.2 (2)
C23—Cu1—C24i113.37 (7)C15—C16—H16A119.4
O3i—Cu1—C24i27.59 (6)C11—C16—H16A119.4
C23—O1—Cu1100.02 (13)C18—C17—C22118.57 (19)
C23—O2—Cu179.48 (13)C18—C17—C11125.76 (19)
C24—O3—Cu1i77.28 (13)C22—C17—C11115.66 (19)
C24—O4—Cu1i102.92 (13)C17—C18—C19119.05 (19)
C1—N1—C9119.4 (2)C17—C18—C24122.42 (19)
C1—N1—Cu1125.93 (16)C19—C18—C24118.37 (19)
C9—N1—Cu1114.61 (15)C20—C19—C18121.8 (2)
C8—N2—C10119.0 (2)C20—C19—H19A119.1
C8—N2—Cu1125.93 (17)C18—C19—H19A119.1
C10—N2—Cu1115.06 (15)C19—C20—C21119.1 (2)
N1—C1—C2121.8 (2)C19—C20—H20A120.4
N1—C1—H1A119.1C21—C20—H20A120.4
C2—C1—H1A119.1C22—C21—C20119.6 (2)
C3—C2—C1119.0 (3)C22—C21—H21A120.2
C3—C2—H2A120.5C20—C21—H21A120.2
C1—C2—H2A120.5C21—C22—C17121.9 (2)
C2—C3—C4119.5 (2)C21—C22—H22A119.1
C2—C3—H3A120.2C17—C22—H22A119.1
C4—C3—H3A120.2O2—C23—O1121.8 (2)
C9—C4—C3119.0 (2)O2—C23—C12120.6 (2)
C9—C4—H4A120.5O1—C23—C12117.53 (18)
C3—C4—H4A120.5O2—C23—Cu171.76 (13)
C6—C5—C10119.1 (3)O1—C23—Cu150.14 (10)
C6—C5—H5A120.4C12—C23—Cu1165.85 (15)
C10—C5—H5A120.4O3—C24—O4122.5 (2)
C5—C6—C7119.8 (2)O3—C24—C18121.2 (2)
C5—C6—H6A120.1O4—C24—C18116.28 (18)
C7—C6—H6A120.1O3—C24—Cu1i75.13 (13)
C8—C7—C6118.5 (3)O4—C24—Cu1i48.16 (10)
C8—C7—H7A120.8C18—C24—Cu1i161.10 (15)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O10.932.583.081 (3)114
C4—H4A···O4ii0.932.593.378 (3)143
C5—H5A···O4ii0.932.513.304 (4)144
C6—H6A···O3iii0.932.253.162 (3)166
C16—H16A···O2iv0.932.483.192 (3)133
C19—H19A···O40.932.452.761 (3)100
Symmetry codes: (ii) x+1, y1/2, z1/2; (iii) x, y1/2, z1/2; (iv) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C14H8O4)2(C10H8N2)2]
Mr1839.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.234 (2), 13.336 (3), 15.431 (6)
β (°) 122.16 (2)
V3)1957.1 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.15
Crystal size (mm)0.40 × 0.26 × 0.23
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.708, 0.771
No. of measured, independent and
observed [I > 2σ(I)] reflections
18687, 4472, 3708
Rint0.046
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.118, 1.04
No. of reflections4472
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.60

Computer programs: SMART (Siemens, 1994), SAINT (Siemens, 1994), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O11.9640 (15)Cu1—O22.434 (2)
Cu1—O4i1.9725 (16)Cu1—C232.519 (2)
Cu1—N21.9814 (19)Cu1—O3i2.557 (2)
Cu1—N11.9897 (19)
O1—Cu1—O4i93.92 (7)O1—Cu1—N194.56 (7)
O1—Cu1—N2162.77 (7)O4i—Cu1—N1160.15 (7)
O4i—Cu1—N295.38 (8)N2—Cu1—N181.35 (8)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O10.932.583.081 (3)114.4
C4—H4A···O4ii0.932.593.378 (3)142.8
C5—H5A···O4ii0.932.513.304 (4)143.5
C6—H6A···O3iii0.932.253.162 (3)166.0
C16—H16A···O2iv0.932.483.192 (3)133.4
C19—H19A···O40.932.452.761 (3)99.7
Symmetry codes: (ii) x+1, y1/2, z1/2; (iii) x, y1/2, z1/2; (iv) x+2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by a Project of Fujian Science and Technology Committee (grant No. 2006F5067), the Natural Science Foundation of Fujian Province (grant Nos. 2008J0172 and 2008J0237) and a Student Innovation Project of Zhangzhou Normal University (grant No. 08xscxxsyxm25).

References

First citationBu, X. H., Tong, M. L., Chang, H. C., Kitagawa, S. & Batten, S. R. (2004). Angew. Chem. Int. Ed. 43, 192–195.  Web of Science CSD CrossRef CAS
First citationHe, H.-Y., Zhou, Y.-L. & Gao, J. (2007). Acta Cryst. E63, m2007.  Web of Science CSD CrossRef IUCr Journals
First citationHe, H.-Y. & Zhu, L.-G. (2003). Acta Cryst. E59, o174–o176.  Web of Science CSD CrossRef IUCr Journals
First citationHuang, X. C., Zhang, J. P., Lin, Y. Y., Yu, X. L. & Chen, X. M. (2004). Chem. Commun. pp. 1100–1101.  Web of Science CSD CrossRef
First citationLong, L. S., Chen, X. M., Tong, M. L., Sun, Z. G., Ren, Y. P., Huang, R. B. & Zheng, L. S. (2001). J. Chem. Soc. Dalton Trans. pp. 2888–2890.  Web of Science CSD CrossRef
First citationMa, B. Q., Sun, H. L. & Gao, S. (2003). Chem. Commun. pp. 2164–2165.  Web of Science CSD CrossRef
First citationRao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.  Web of Science CrossRef CAS
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSiemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
First citationYaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714.  Web of Science CrossRef PubMed CAS
First citationYang, S. Y., Long, L. S., Jiang, Y. B., Huang, R. B. & Zheng, L. S. (2002). Chem. Mater. 14, 3229–3230.  Web of Science CSD CrossRef CAS
First citationZhang, J. P., Zheng, S. L., Huang, X. C. & Chen, X. M. (2004). Angew. Chem. Int. Ed. 43, 206–209.  Web of Science CSD CrossRef CAS
First citationZhu, H. L., Tong, Y. X. & Chen, X. M. (2001). Transition Met. Chem. 26, 528–531.  Web of Science CSD CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1171-m1172
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds