organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(5,6,7,8-Tetra­hydro-2-naphth­yl)iso­benzo­furan-1(3H)-one

aDepartment of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
*Correspondence e-mail: kitamura@eng.u-hyogo.ac.jp

(Received 26 July 2008; accepted 31 July 2008; online 6 August 2008)

The title compound, C18H16O2, was prepared by reduction of 2-(5,6,7,8-tetra­hydro-2-naphtho­yl)benzoic acid with zinc dust. The benzene ring in the tetra­hydro­naphthyl substituent is nearly perpendicular to the plane of the isobenzofuran-1(3H)-one ring [87.15 (4)°]. The cyclo­hexane unit has a half-chair conformation in which two methylene groups in the tetra­methyl­ene bridge are disordered over two positions; the site-occupancy factors are 0.838 (4) and 0.162 (4). The crystal structure exhibits alternating isobenzofuran-1(3H)-one and tetra­hydro­naphthalene layers.

Related literature

For related mol­ecular structures, including a 3-phenyl isobenzofuran-1(3H)-one system, see: Chan & Scheidt (2006[Chan, A. & Scheidt, K. A. (2006). J. Am. Chem. Soc. 128, 4558-4559.]); Kalyani & Vijayan (1969[Kalyani, V. & Vijayan, M. (1969). Acta Cryst. B25, 1281-1288.]); Vijayan et al. (2006[Vijayan, M., Chinnakali, K., Amaladass, P., Mohanakrishnan, A. K. & Fun, H.-K. (2006). Acta Cryst. E62, o1941-o1943.]). For related literature, see: Konosonoks et al. (2005[Konosonoks, A., Wright, P. J., Tsao, M.-L., Pika, J., Novak, K., Mandel, S. M., Krause Bauer, J. A., Bohne, C. & Gudmundsdottir, A. D. (2005). J. Org. Chem. 70, 2763-2770.]); Schroeter (1921[Schroeter, G. (1921). Chem. Ber. 54, 2242-2248.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16O2

  • Mr = 264.31

  • Monoclinic, P 21 /c

  • a = 11.2950 (11) Å

  • b = 15.8251 (10) Å

  • c = 7.8092 (10) Å

  • β = 109.0970 (10)°

  • V = 1319.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 223 K

  • 0.5 × 0.5 × 0.03 mm

Data collection
  • Rigaku/MSC Mercury CCD area-detector diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.980, Tmax = 0.995

  • 5765 measured reflections

  • 2955 independent reflections

  • 2502 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.108

  • S = 1.1

  • 2955 reflections

  • 200 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX.

Supporting information


Comment top

A number of 3-phenylisobenzofuran-1(3H)-one derivatives have been prepared from the corresponding 2-benzoylbenzoic acid by reduction using zinc dust. Several crystal structures including 3-phenylisobenzofuran-1(3H)-one were reported (Chan & Scheidt, 2006; Kalyani & Vijayan, 1969; Konosonoks et al., 2005; Vijayan et al., 2006). The title compound, which was first prepared by Schroeter (1921), can be regarded as a derivative of 3-phenylisobenzofuran-1(3H)-one by annelation of cyclohexane to the substituent phenyl ring. In order to ascertain the effect of the annelation of cyclohexane into the structure, X-ray analysis was performed.

The molecular structure is shown in Fig. 1. The isobenzofuran-1(3H)-one moiety is essentially planar. The benzene ring within the tetrahydronaphthyl substituent is nearly perpendicular to the plane of the isobenzofuran-1(3H)-one ring (87.13 (3)°). The dihedral angle O1—C2—C10—C9 between the isobenzofuran-1(3H)-one ring and the benzene ring is 58.55 (12)°, and is smaller than that (64.49°) of the corresponding 3-phenylisobenzofuran-1(3H)-one (Chan & Scheidt, 2006). The annelated cyclohexane ring has a half-chair configuration. The ethylene unit in the tetramethylene-bridge is disordered over two sites (C14—C15A—C16A—C17 and C14—C15B—C16B—C17) with refined occupancies of 0.838 (4) and 0.162 (4).

As shown in Fig. 2, the crystal structure is characterized by two alternating layers, which consist of the isobenzofuran-1(3H)-one layer lying on the bc planes and the tetrahydro naphthalene layer, which exists between the bc planes.

Related literature top

For related molecular structures, including a 3-phenyl isobenzofuran-1(3H)-one system, see: Chan & Scheidt (2006); Kalyani & Vijayan (1969); Vijayan et al. (2006). For related literature, see: Konosonoks et al. (2005); Schroeter (1921).

Experimental top

The title compound was prepared according to the modified method described by Schroeter (1921). A mixture of 2-(5,6,7,8-tetrahydronaphtho-2-yl)benzoic acid (2.01 g, 7.16 mmol) and zinc dust (2.00 g, 30.6 mmol) in 25% ammonia solution (30 ml) was refluxed for 4 h. The reaction mixture was cooled and conc. HCl (8 ml) was added. The resulting precipitate was filtered off, and washed with dichloromethane. The organic layer was separated, washed with brine, and dried over Na2SO4. After evaporation, column chromatography on silica gel (CH2Cl2) gave the compound (1.17 g, 62%) as a white solid. Colourless crystals suitable for X-ray analysis were obtained from a dichloromethane solution.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model with Caromatic—H = 0.94Å [Uiso(H) = 1.2Ueq(C)] and Cmethylene—H = 0.98Å [Uiso(H) = 1.2Ueq(C)]. The methylene carbon atoms (C15A, C15B, C16A, and C16B) and the associated hydrogen atoms are disordered over two sites (C14—C15A—C16A—C17 and C14—C15B—C16B—C17) with occupancies of 0.838 (4) and 0.162 (4). The values were determined by refining site occupancies. Three C—C distances (C14—C15B, C15B—C16B, and C16B—C17) of the disordered atoms (C15B and C16B) were restrained to 1.54 (1) Å.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: WinGX (Farrugia, 1999); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids for non-H atoms. The minor occupied site of the disordered methylene-bridge chain is omitted for clarity.
[Figure 2] Fig. 2. The packing diagram of (I), viewed down the c axis. Hydrogen atoms are omitted for clarity.
3-(5,6,7,8-Tetrahydro-2-naphthyl)isobenzofuran-1(3H)-one top
Crystal data top
C18H16O2F(000) = 560
Mr = 264.31Dx = 1.331 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4161 reflections
a = 11.2950 (11) Åθ = 3.1–27.5°
b = 15.8251 (10) ŵ = 0.09 mm1
c = 7.8092 (10) ÅT = 223 K
β = 109.097 (1)°Platelet, colourless
V = 1319.0 (2) Å30.5 × 0.5 × 0.03 mm
Z = 4
Data collection top
Rigaku/MSC Mercury CCD area-detector
diffractometer
2955 independent reflections
Radiation source: rotating-anode X-ray tube2502 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 14.7059 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 140
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 2020
Tmin = 0.980, Tmax = 0.995l = 910
5765 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.1 w = 1/[σ2(Fo2) + (0.1123P)2 + 0.367P]
where P = (Fo2 + 2Fc2)/3
2955 reflections(Δ/σ)max = 0.001
200 parametersΔρmax = 0.23 e Å3
3 restraintsΔρmin = 0.16 e Å3
Crystal data top
C18H16O2V = 1319.0 (2) Å3
Mr = 264.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2950 (11) ŵ = 0.09 mm1
b = 15.8251 (10) ÅT = 223 K
c = 7.8092 (10) Å0.5 × 0.5 × 0.03 mm
β = 109.097 (1)°
Data collection top
Rigaku/MSC Mercury CCD area-detector
diffractometer
2955 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2502 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.995Rint = 0.015
5765 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0383 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.1Δρmax = 0.23 e Å3
2955 reflectionsΔρmin = 0.16 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.02994 (10)0.24031 (7)0.24158 (14)0.0297 (2)
C20.88406 (10)0.15608 (7)0.31444 (13)0.0275 (2)
H20.88990.14810.44270.033*
C30.97929 (9)0.10068 (7)0.27234 (12)0.0253 (2)
C40.99036 (10)0.01332 (7)0.27188 (13)0.0298 (2)
H40.93250.02180.30090.036*
C51.08967 (11)0.02030 (7)0.22709 (14)0.0333 (3)
H51.09990.07930.22740.04*
C61.17465 (11)0.03146 (8)0.18158 (14)0.0349 (3)
H61.2410.00690.15140.042*
C71.16291 (10)0.11850 (7)0.18020 (14)0.0314 (2)
H71.21930.15370.14810.038*
C81.06447 (10)0.15181 (7)0.22818 (12)0.0261 (2)
C90.71587 (10)0.15338 (7)0.00822 (13)0.0268 (2)
H90.77720.16830.04370.032*
C100.75057 (10)0.14339 (6)0.19540 (13)0.0254 (2)
C110.65959 (11)0.12144 (7)0.27084 (14)0.0309 (2)
H110.68110.11490.3970.037*
C120.53701 (11)0.10919 (8)0.16038 (14)0.0333 (3)
H120.47630.09390.21310.04*
C130.50144 (10)0.11891 (6)0.02704 (13)0.0272 (2)
C140.36564 (10)0.10711 (8)0.14102 (15)0.0368 (3)
H14A0.31660.15340.11480.044*
H14B0.33530.05430.10460.044*
C15A0.34138 (19)0.10439 (13)0.3451 (2)0.0362 (5)0.838 (4)
H15A0.36380.04860.37960.043*0.838 (4)
H15B0.25220.11410.40990.043*0.838 (4)
C16A0.41910 (14)0.17205 (11)0.39664 (18)0.0363 (5)0.838 (4)
H16A0.39920.22750.35730.044*0.838 (4)
H16B0.39880.17340.52860.044*0.838 (4)
C15B0.3475 (11)0.1453 (9)0.3284 (11)0.070 (5)0.162 (4)
H15C0.26250.13250.40850.084*0.162 (4)
H15D0.35550.20680.31690.084*0.162 (4)
C16B0.4407 (7)0.1126 (8)0.4145 (10)0.056 (3)0.162 (4)
H16C0.44750.05090.40590.068*0.162 (4)
H16D0.41680.12920.54220.068*0.162 (4)
C170.55921 (11)0.15332 (8)0.30668 (14)0.0347 (3)
H17A0.58090.10190.35970.042*
H17B0.60840.20.33110.042*
C180.59290 (10)0.14175 (6)0.10368 (13)0.0257 (2)
O10.92438 (7)0.24194 (5)0.29001 (10)0.0330 (2)
O21.07896 (8)0.30458 (5)0.21603 (11)0.0418 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0239 (5)0.0292 (6)0.0300 (5)0.0028 (4)0.0004 (4)0.0003 (4)
C20.0265 (6)0.0272 (5)0.0274 (5)0.0017 (4)0.0067 (4)0.0023 (4)
C30.0231 (5)0.0276 (5)0.0218 (4)0.0000 (4)0.0026 (4)0.0002 (3)
C40.0323 (6)0.0273 (5)0.0273 (5)0.0015 (4)0.0062 (4)0.0024 (4)
C50.0372 (6)0.0272 (6)0.0317 (5)0.0053 (4)0.0063 (4)0.0004 (4)
C60.0300 (6)0.0401 (6)0.0334 (5)0.0072 (5)0.0088 (4)0.0026 (4)
C70.0249 (5)0.0389 (6)0.0293 (5)0.0016 (4)0.0072 (4)0.0012 (4)
C80.0232 (5)0.0268 (5)0.0237 (4)0.0011 (4)0.0014 (4)0.0004 (3)
C90.0247 (5)0.0297 (5)0.0284 (5)0.0011 (4)0.0120 (4)0.0014 (4)
C100.0237 (5)0.0247 (5)0.0278 (5)0.0014 (4)0.0083 (4)0.0023 (4)
C110.0309 (6)0.0385 (6)0.0241 (5)0.0007 (4)0.0103 (4)0.0015 (4)
C120.0281 (6)0.0440 (7)0.0315 (5)0.0030 (5)0.0147 (4)0.0018 (4)
C130.0228 (5)0.0295 (5)0.0298 (5)0.0009 (4)0.0092 (4)0.0003 (4)
C140.0240 (6)0.0509 (7)0.0349 (6)0.0017 (5)0.0089 (4)0.0013 (5)
C15A0.0275 (8)0.0474 (11)0.0288 (8)0.0073 (8)0.0024 (6)0.0018 (7)
C16A0.0345 (9)0.0412 (10)0.0286 (7)0.0015 (7)0.0040 (6)0.0061 (6)
C15B0.020 (5)0.123 (13)0.054 (6)0.001 (7)0.007 (4)0.044 (8)
C16B0.042 (5)0.098 (10)0.027 (4)0.012 (5)0.008 (3)0.008 (4)
C170.0348 (6)0.0437 (7)0.0258 (5)0.0052 (5)0.0103 (4)0.0010 (4)
C180.0262 (5)0.0261 (5)0.0256 (5)0.0008 (4)0.0099 (4)0.0007 (4)
O10.0272 (4)0.0260 (4)0.0430 (4)0.0011 (3)0.0077 (3)0.0056 (3)
O20.0370 (5)0.0279 (4)0.0544 (5)0.0074 (3)0.0066 (4)0.0031 (3)
Geometric parameters (Å, º) top
C1—O21.2054 (13)C12—C131.3937 (14)
C1—O11.3639 (14)C12—H120.94
C1—C81.4668 (15)C13—C181.4002 (14)
C2—O11.4651 (13)C13—C141.5122 (15)
C2—C101.5037 (14)C14—C15A1.527 (2)
C2—C31.5050 (14)C14—C15B1.534 (9)
C2—H20.99C14—H14A0.98
C3—C81.3844 (14)C14—H14B0.98
C3—C41.3881 (15)C15A—C16A1.520 (2)
C4—C51.3858 (15)C15A—H15A0.98
C4—H40.94C15A—H15B0.98
C5—C61.3935 (17)C16A—C171.5357 (19)
C5—H50.94C16A—H16A0.98
C6—C71.3834 (16)C16A—H16B0.98
C6—H60.94C15B—C16B1.514 (9)
C7—C81.3882 (15)C15B—H15C0.98
C7—H70.94C15B—H15D0.98
C9—C181.3901 (15)C16B—C171.476 (7)
C9—C101.3930 (14)C16B—H16C0.98
C9—H90.94C16B—H16D0.98
C10—C111.3856 (14)C17—C181.5155 (14)
C11—C121.3846 (16)C17—H17A0.98
C11—H110.94C17—H17B0.98
O2—C1—O1121.36 (10)C13—C14—H14A108.6
O2—C1—C8130.29 (11)C15A—C14—H14A108.6
O1—C1—C8108.35 (9)C15B—C14—H14A89.8
O1—C2—C10109.57 (8)C13—C14—H14B108.6
O1—C2—C3103.71 (8)C15A—C14—H14B108.6
C10—C2—C3115.52 (8)C15B—C14—H14B131.5
O1—C2—H2109.3H14A—C14—H14B107.6
C10—C2—H2109.3C16A—C15A—C14109.54 (14)
C3—C2—H2109.3C16A—C15A—H15A109.8
C8—C3—C4120.72 (10)C14—C15A—H15A109.8
C8—C3—C2108.57 (9)C16A—C15A—H15B109.8
C4—C3—C2130.71 (10)C14—C15A—H15B109.8
C5—C4—C3117.65 (10)H15A—C15A—H15B108.2
C5—C4—H4121.2C15A—C16A—C17109.93 (13)
C3—C4—H4121.2C15A—C16A—H16A109.7
C4—C5—C6121.37 (10)C17—C16A—H16A109.7
C4—C5—H5119.3C15A—C16A—H16B109.7
C6—C5—H5119.3C17—C16A—H16B109.7
C7—C6—C5120.99 (10)H16A—C16A—H16B108.2
C7—C6—H6119.5C16B—C15B—C14113.2 (8)
C5—C6—H6119.5C16B—C15B—H15C108.9
C6—C7—C8117.33 (10)C14—C15B—H15C108.9
C6—C7—H7121.3C16B—C15B—H15D108.9
C8—C7—H7121.3C14—C15B—H15D108.9
C3—C8—C7121.91 (10)H15C—C15B—H15D107.7
C3—C8—C1108.52 (9)C17—C16B—C15B103.3 (8)
C7—C8—C1129.57 (10)C17—C16B—H16C111.1
C18—C9—C10121.66 (9)C15B—C16B—H16C111.1
C18—C9—H9119.2C17—C16B—H16D111.1
C10—C9—H9119.2C15B—C16B—H16D111.1
C11—C10—C9118.78 (9)H16C—C16B—H16D109.1
C11—C10—C2120.25 (9)C16B—C17—C18114.5 (4)
C9—C10—C2120.97 (9)C18—C17—C16A111.74 (10)
C12—C11—C10119.99 (9)C16B—C17—H17A72.7
C12—C11—H11120C18—C17—H17A109.3
C10—C11—H11120C16A—C17—H17A109.3
C11—C12—C13121.65 (10)C16B—C17—H17B133.2
C11—C12—H12119.2C18—C17—H17B109.3
C13—C12—H12119.2C16A—C17—H17B109.3
C12—C13—C18118.55 (9)H17A—C17—H17B107.9
C12—C13—C14119.53 (9)C9—C18—C13119.38 (9)
C18—C13—C14121.90 (9)C9—C18—C17119.92 (9)
C13—C14—C15A114.77 (11)C13—C18—C17120.69 (9)
C13—C14—C15B107.8 (5)C1—O1—C2110.84 (8)
O1—C2—C3—C80.12 (10)C11—C12—C13—C14178.35 (11)
C10—C2—C3—C8119.79 (9)C12—C13—C14—C15A170.05 (12)
O1—C2—C3—C4179.84 (9)C18—C13—C14—C15A11.73 (17)
C10—C2—C3—C459.94 (14)C12—C13—C14—C15B164.3 (5)
C8—C3—C4—C50.44 (14)C18—C13—C14—C15B13.9 (5)
C2—C3—C4—C5179.87 (10)C13—C14—C15A—C16A42.2 (2)
C3—C4—C5—C60.87 (15)C15B—C14—C15A—C16A36.6 (10)
C4—C5—C6—C70.23 (16)C14—C15A—C16A—C1763.7 (2)
C5—C6—C7—C80.84 (15)C13—C14—C15B—C16B52.2 (11)
C4—C3—C8—C70.66 (14)C15A—C14—C15B—C16B58.4 (9)
C2—C3—C8—C7179.10 (9)C14—C15B—C16B—C1772.0 (13)
C4—C3—C8—C1179.57 (8)C15B—C16B—C17—C1852.0 (9)
C2—C3—C8—C10.67 (10)C15B—C16B—C17—C16A42.7 (6)
C6—C7—C8—C31.29 (14)C15A—C16A—C17—C16B48.9 (5)
C6—C7—C8—C1178.99 (10)C15A—C16A—C17—C1853.52 (17)
O2—C1—C8—C3179.48 (11)C10—C9—C18—C130.41 (15)
O1—C1—C8—C31.02 (10)C10—C9—C18—C17179.96 (10)
O2—C1—C8—C70.77 (18)C12—C13—C18—C90.49 (15)
O1—C1—C8—C7178.73 (10)C14—C13—C18—C9178.72 (10)
C18—C9—C10—C110.10 (15)C12—C13—C18—C17179.89 (10)
C18—C9—C10—C2179.91 (9)C14—C13—C18—C171.65 (16)
O1—C2—C10—C11121.44 (10)C16B—C17—C18—C9160.3 (5)
C3—C2—C10—C11121.92 (11)C16A—C17—C18—C9157.81 (11)
O1—C2—C10—C958.55 (12)C16B—C17—C18—C1319.3 (5)
C3—C2—C10—C958.09 (13)C16A—C17—C18—C1322.56 (15)
C9—C10—C11—C120.51 (16)O2—C1—O1—C2179.49 (9)
C2—C10—C11—C12179.50 (10)C8—C1—O1—C20.95 (10)
C10—C11—C12—C130.44 (17)C10—C2—O1—C1124.41 (9)
C11—C12—C13—C180.07 (17)C3—C2—O1—C10.53 (10)

Experimental details

Crystal data
Chemical formulaC18H16O2
Mr264.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)223
a, b, c (Å)11.2950 (11), 15.8251 (10), 7.8092 (10)
β (°) 109.097 (1)
V3)1319.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.5 × 0.5 × 0.03
Data collection
DiffractometerRigaku/MSC Mercury CCD area-detector
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.980, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
5765, 2955, 2502
Rint0.015
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.108, 1.1
No. of reflections2955
No. of parameters200
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.16

Computer programs: CrystalClear (Rigaku/MSC, 2001), WinGX (Farrugia, 1999), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

 

Acknowledgements

We thank the Instrument Center of the Institute for Molecular Science for the X-ray structural analysis. This work was supported by a Grant-in-Aid (No. 20550128) for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChan, A. & Scheidt, K. A. (2006). J. Am. Chem. Soc. 128, 4558–4559.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKalyani, V. & Vijayan, M. (1969). Acta Cryst. B25, 1281–1288.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKonosonoks, A., Wright, P. J., Tsao, M.-L., Pika, J., Novak, K., Mandel, S. M., Krause Bauer, J. A., Bohne, C. & Gudmundsdottir, A. D. (2005). J. Org. Chem. 70, 2763–2770.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSchroeter, G. (1921). Chem. Ber. 54, 2242–2248.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVijayan, M., Chinnakali, K., Amaladass, P., Mohanakrishnan, A. K. & Fun, H.-K. (2006). Acta Cryst. E62, o1941–o1943.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds