organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1659-o1660

A second monoclinic polymorph of 2-amino-4,6-di­chloro­pyrimidine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cDepartment of Chemistry, Bengal Engineering and Science University', Shibpur, Howrah, India 711 103
*Correspondence e-mail: hkfun@usm.my

(Received 25 July 2008; accepted 27 July 2008; online 6 August 2008)

The title chloro-substituted 2-amino­pyrimidine, C4H3Cl2N3, is a second monoclinic polymorph of this compound which crystallizes in the space group C2/c. The structure was previously reported [Clews & Cochran (1948[Clews, C. J. B. & Cochran, W. (1948). Acta Cryst. 1, 4-11.]). Acta Cryst. 1, 4–11] in the space group P21/a. There are two crystallographically independent mol­ecules in the asymmetric unit and each mol­ecule is planar. The dihedral angle between the two pyrimidine rings is 30.71 (12)°. In the crystal structure, mol­ecules are linked via N—H⋯N inter­molecular hydrogen bonds, forming infinite one-dimensional chains along the a axis. These hydrogen bonds generate R22(8) ring motifs. The chains are stacked along the b axis.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: the polymorph reported by Clews & Cochran (1948[Clews, C. J. B. & Cochran, W. (1948). Acta Cryst. 1, 4-11.]); Low et al. (2002[Low, J. N., Quesada, A., Marchal, A., Melguizo, M., Nogueras, M. & Glidewell, C. (2002). Acta Cryst. C58, o289-o294.]). For applications of pyrimidine compounds and their supra­molecular chemistry, see, for example: Blackburn & Gait (1996[Blackburn, G. M. & Gait, M. J. (1996). Nucleic Acids in Chemistry and Biology. Editors. Oxford University Press.]); Brown (1988[Brown, D. J. (1988). Fused Pyrimidines The Chemistry of Heterocyclic Compounds, Vol. 24, pt. 3. New York: John Wiley & Sons.]); Hurst (1980[Hurst, D. T. (1980). Chemistry and Biochemistry of Pyrimidines, Purines, Pteridines. Chichester: Wiley.]); Goswami et al. (2008a[Goswami, S., Jana, S., Das, N. K., Fun, H.-K. & Chantrapromma, S. (2008a). J. Mol. Struct. 876, 313-321.],b[Goswami, S., Jana, S., Hazra, A., Fun, H.-K. & Chantrapromma, S. (2008b). Supramol. Chem. 20, 495-500.]); Ligthart et al. (2005[Ligthart, G. B. W. L., Ohkawa, H., Sijbesma, R. P. & Meijer, E. W. (2005). J. Am. Chem. Soc. 127, 810-811.]); Sherrington & Taskinen (2001[Sherrington, D. C. & Taskinen, K. A. (2001). Chem. Soc. Rev. 30, 83-93.]).

[Scheme 1]

Experimental

Crystal data
  • C4H3Cl2N3

  • Mr = 163.99

  • Monoclinic, C 2/c

  • a = 32.060 (4) Å

  • b = 3.8045 (6) Å

  • c = 21.302 (3) Å

  • β = 102.193 (7)°

  • V = 2539.6 (6) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 296 (2) K

  • 0.57 × 0.14 × 0.02 mm

Data collection
  • Bruker SMART APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.620, Tmax = 0.985

  • 12772 measured reflections

  • 2886 independent reflections

  • 1875 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.098

  • S = 1.02

  • 2886 reflections

  • 187 parameters

  • All H-atom parameters refined

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3A—H2NA⋯N1Ai 0.75 (3) 2.43 (3) 3.172 (3) 176 (2)
N3A—H1NA⋯N2Bi 0.87 (3) 2.33 (3) 3.201 (3) 172 (2)
N3B—H1NB⋯N2Ai 0.87 (3) 2.39 (3) 3.253 (4) 174 (3)
N3B—H2NB⋯N1Bii 0.84 (3) 2.41 (3) 3.242 (3) 172 (3)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Functionalized pyrimidines play a major role in the synthesis of different drug molecules and of naturally occurring pyrimidine bases (Blackburn & Gait, 1996; Brown, 1988; Hurst, 1980). Substituted pyrimidines are also very important for studies on multiple hydrogen bonding interactions in molecular recognition and supramolecular chemistry (Sherrington & Taskinen, 2001; Goswami et al., 2008a,b; Ligthart et al., 20050). In this work we report the crystal structure of the title compound, Fig 1, which is a second monoclinic polymorph of 2-amino-4,6-dichloropyrimidine.

The crystal structure of the title compound (I) was previously reported by Clews & Cochran (1948) in the monoclinic space group P21/a, with a = 16.447, b = 3.845, c = 10.283 Å, β = 107.58° and Z = 4. In the present work, the compound crystallized out in the monoclinic space group C2/c with Z = 16. There are two crystallographically independent molecules in the asymmetric unit, A and B, (see Fig. 1) with slightly different bond lengths and bond angles. Both molecules A and B are planar with maximum deviations of 0.005 (2) Å for atom N2A in A and 0.009 (2) Å for atom C2B in B. The dihedral angle between the two pyrimidine rings is 30.71 (12)°. The amino group acts as a double donor in N—H···N hydrogen bonds, while the two ring N atoms (N1 and N2) act as the acceptors. The molecules are linked via N—H···N intermolecular hydrogen bonds to form infinite one-dimensional chains along the a axis, Table 1. These hydrogen bonds generate R22(8) ring motifs (Bernstein at al., 1995) (Fig. 2). Interestingly, the Cl atoms do not form N—H···Cl hydrogen bonds. The closest Cl···Cl distance is 3.3635 (11) Å [3.37 Å in Clews & Cochran (1948)]. The bond lengths and angles in (I) are within normal ranges (Allen et al., 1987) and comparable to those found in related structures (Clews & Cochran, 1948; Low et al., 2002).

In the crystal packing shown in Fig. 2, the [1 0 0] molecular chains are stacked along the b axis.

Related literature top

For bond-length data, see: Allen et al. (1987). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: the polymorph reported by Clews & Cochran (1948); Low et al. (2002). For applications of pyrimidine compounds and their supramolecular chemistry, see, for example: Blackburn & Gait (1996); Brown (1988); Hurst (1980); Goswami et al. (2008a,b); Ligthart et al. (2005); Sherrington & Taskinen (2001).

Experimental top

Phosphorus oxy-chloride (POCl3) (25 ml) was added to anhydrous 2-amino-4,6-dioxopyrimidine (6 g) and the mixture refluxed at 383 K for 12 h. Excess POCl3 was distilled off. The solid residue was neutralized using KOH solution in an ice bath and saturated NaHCO3 solution was added. The solid residue was filtered off, extracted with CHCl3 and the solution was dried over Na2SO4 and then concentrated under vacuum. The crude product was purified by column chromatography using 20% ethyl acetate in petroleum ether as eluent and the title compound (I) (4.29 g, 61%) was isolated. Single crystals were grown by slow evaporation of a CH2Cl2/ethanol (v/v 3:1) solution, Mp. 492–494 K.

Refinement top

All H atoms were located in a difference map and freely refined isotropically. The highest residual electron density peak is located at 1.00 Å from N2A and the deepest hole is located at 0.81 Å from H2NA.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. The crystal packing of (I), viewed approximately along the b axis showing one-dimensional chains along the a axis. Hydrogen bonds were shown as dashed lines.
A second monoclinic polymorph of 2-amino-4,6-dichloropyrimidine top
Crystal data top
C4H3Cl2N3F(000) = 1312
Mr = 163.99Dx = 1.716 Mg m3
Monoclinic, C2/cMelting point = 492–494 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 32.060 (4) ÅCell parameters from 2886 reflections
b = 3.8045 (6) Åθ = 1.3–27.5°
c = 21.302 (3) ŵ = 0.92 mm1
β = 102.193 (7)°T = 296 K
V = 2539.6 (6) Å3Block, colorless
Z = 160.57 × 0.14 × 0.02 mm
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
2886 independent reflections
Radiation source: fine-focus sealed tube1875 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 8.33 pixels mm-1θmax = 27.5°, θmin = 1.3°
ω scansh = 4040
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 44
Tmin = 0.620, Tmax = 0.985l = 2727
12772 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0403P)2]
where P = (Fo2 + 2Fc2)/3
2886 reflections(Δ/σ)max = 0.001
187 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C4H3Cl2N3V = 2539.6 (6) Å3
Mr = 163.99Z = 16
Monoclinic, C2/cMo Kα radiation
a = 32.060 (4) ŵ = 0.92 mm1
b = 3.8045 (6) ÅT = 296 K
c = 21.302 (3) Å0.57 × 0.14 × 0.02 mm
β = 102.193 (7)°
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
2886 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1875 reflections with I > 2σ(I)
Tmin = 0.620, Tmax = 0.985Rint = 0.051
12772 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.098All H-atom parameters refined
S = 1.02Δρmax = 0.22 e Å3
2886 reflectionsΔρmin = 0.24 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1A0.330814 (19)0.45738 (18)0.35093 (3)0.0475 (2)
Cl2A0.49584 (2)0.5271 (2)0.33992 (4)0.0572 (2)
N1A0.46421 (6)0.7708 (5)0.43348 (9)0.0371 (5)
N2A0.38986 (6)0.7401 (5)0.43849 (9)0.0349 (5)
N3A0.43941 (8)0.9927 (7)0.51907 (11)0.0490 (6)
H2NA0.4619 (8)1.056 (7)0.5293 (12)0.033 (8)*
H1NA0.4174 (9)1.026 (7)0.5366 (14)0.057 (9)*
C1A0.38306 (7)0.5786 (6)0.38271 (11)0.0338 (6)
C2A0.41389 (8)0.5008 (7)0.34867 (12)0.0377 (6)
H2A0.4102 (7)0.386 (6)0.3120 (11)0.034 (7)*
C3A0.45423 (7)0.6088 (7)0.37766 (11)0.0353 (6)
C4A0.43110 (7)0.8296 (7)0.46279 (11)0.0350 (6)
Cl1B0.58263 (2)1.02542 (19)0.31034 (3)0.0510 (2)
Cl2B0.73894 (2)0.50031 (18)0.32094 (3)0.0474 (2)
N1B0.71199 (6)0.7404 (6)0.41918 (9)0.0389 (5)
N2B0.64127 (6)0.9690 (6)0.41463 (9)0.0406 (5)
N3B0.69119 (9)0.9534 (8)0.50908 (11)0.0589 (7)
H1NB0.6706 (10)1.049 (8)0.5237 (16)0.080 (12)*
H2NB0.7156 (10)0.881 (9)0.5264 (16)0.075 (11)*
C1B0.63348 (7)0.9103 (6)0.35235 (12)0.0364 (6)
C2B0.66172 (7)0.7709 (7)0.31888 (11)0.0374 (6)
H2B0.6550 (7)0.753 (7)0.2743 (12)0.047 (7)*
C3B0.70066 (7)0.6887 (7)0.35702 (11)0.0361 (6)
C4B0.68134 (8)0.8851 (7)0.44634 (11)0.0403 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0320 (3)0.0586 (5)0.0491 (4)0.0065 (3)0.0027 (3)0.0029 (3)
Cl2A0.0442 (4)0.0698 (5)0.0658 (5)0.0003 (4)0.0298 (3)0.0132 (4)
N1A0.0293 (10)0.0422 (13)0.0402 (11)0.0003 (10)0.0086 (9)0.0014 (11)
N2A0.0295 (10)0.0416 (13)0.0339 (10)0.0028 (10)0.0073 (8)0.0013 (10)
N3A0.0351 (14)0.0707 (19)0.0418 (13)0.0073 (14)0.0093 (11)0.0161 (13)
C1A0.0293 (12)0.0320 (14)0.0385 (13)0.0009 (11)0.0040 (10)0.0039 (11)
C2A0.0378 (14)0.0402 (16)0.0355 (13)0.0012 (13)0.0087 (11)0.0057 (13)
C3A0.0338 (13)0.0354 (14)0.0396 (13)0.0033 (12)0.0141 (10)0.0001 (12)
C4A0.0327 (13)0.0404 (15)0.0315 (12)0.0020 (12)0.0060 (10)0.0013 (12)
Cl1B0.0344 (4)0.0669 (5)0.0514 (4)0.0072 (4)0.0083 (3)0.0056 (4)
Cl2B0.0358 (3)0.0566 (4)0.0546 (4)0.0001 (3)0.0204 (3)0.0103 (3)
N1B0.0355 (11)0.0438 (13)0.0386 (11)0.0036 (11)0.0109 (9)0.0016 (10)
N2B0.0388 (12)0.0481 (14)0.0377 (11)0.0044 (11)0.0143 (9)0.0001 (11)
N3B0.0534 (17)0.087 (2)0.0368 (13)0.0187 (16)0.0102 (12)0.0034 (13)
C1B0.0315 (13)0.0386 (15)0.0407 (13)0.0001 (12)0.0112 (10)0.0014 (12)
C2B0.0352 (14)0.0465 (17)0.0328 (13)0.0025 (13)0.0123 (11)0.0036 (13)
C3B0.0329 (13)0.0369 (15)0.0416 (14)0.0031 (12)0.0151 (11)0.0009 (12)
C4B0.0398 (15)0.0477 (16)0.0352 (13)0.0043 (13)0.0122 (11)0.0023 (12)
Geometric parameters (Å, º) top
Cl1A—C1A1.731 (2)Cl1B—C1B1.742 (2)
Cl2A—C3A1.725 (2)Cl2B—C3B1.735 (2)
N1A—C3A1.317 (3)N1B—C3B1.312 (3)
N1A—C4A1.359 (3)N1B—C4B1.358 (3)
N2A—C1A1.314 (3)N2B—C1B1.316 (3)
N2A—C4A1.357 (3)N2B—C4B1.357 (3)
N3A—C4A1.326 (3)N3B—C4B1.332 (3)
N3A—H2NA0.75 (2)N3B—H1NB0.87 (3)
N3A—H1NA0.87 (3)N3B—H2NB0.84 (3)
C1A—C2A1.376 (3)C1B—C2B1.372 (3)
C2A—C3A1.373 (3)C2B—C3B1.374 (3)
C2A—H2A0.88 (2)C2B—H2B0.93 (2)
C3A—N1A—C4A115.3 (2)C3B—N1B—C4B114.8 (2)
C1A—N2A—C4A115.11 (19)C1B—N2B—C4B114.9 (2)
C4A—N3A—H2NA114 (2)C4B—N3B—H1NB114 (2)
C4A—N3A—H1NA115.4 (19)C4B—N3B—H2NB112 (2)
H2NA—N3A—H1NA130 (3)H1NB—N3B—H2NB134 (3)
N2A—C1A—C2A125.2 (2)N2B—C1B—C2B125.7 (2)
N2A—C1A—Cl1A116.12 (18)N2B—C1B—Cl1B115.67 (18)
C2A—C1A—Cl1A118.68 (19)C2B—C1B—Cl1B118.62 (19)
C3A—C2A—C1A114.3 (2)C1B—C2B—C3B113.4 (2)
C3A—C2A—H2A118.9 (14)C1B—C2B—H2B121.6 (15)
C1A—C2A—H2A126.7 (15)C3B—C2B—H2B124.8 (14)
N1A—C3A—C2A124.9 (2)N1B—C3B—C2B125.9 (2)
N1A—C3A—Cl2A116.14 (18)N1B—C3B—Cl2B115.99 (17)
C2A—C3A—Cl2A118.95 (19)C2B—C3B—Cl2B118.12 (18)
N3A—C4A—N2A117.1 (2)N3B—C4B—N2B116.9 (2)
N3A—C4A—N1A117.7 (2)N3B—C4B—N1B117.8 (2)
N2A—C4A—N1A125.2 (2)N2B—C4B—N1B125.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3A—H2NA···N1Ai0.75 (3)2.43 (3)3.172 (3)176 (2)
N3A—H1NA···N2Bi0.87 (3)2.33 (3)3.201 (3)172 (2)
N3B—H1NB···N2Ai0.87 (3)2.39 (3)3.253 (4)174 (3)
N3B—H2NB···N1Bii0.84 (3)2.41 (3)3.242 (3)172 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+3/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC4H3Cl2N3
Mr163.99
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)32.060 (4), 3.8045 (6), 21.302 (3)
β (°) 102.193 (7)
V3)2539.6 (6)
Z16
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.57 × 0.14 × 0.02
Data collection
DiffractometerBruker SMART APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.620, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
12772, 2886, 1875
Rint0.051
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.098, 1.02
No. of reflections2886
No. of parameters187
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.22, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008), SHELXTL and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3A—H2NA···N1Ai0.75 (3)2.43 (3)3.172 (3)176 (2)
N3A—H1NA···N2Bi0.87 (3)2.33 (3)3.201 (3)172 (2)
N3B—H1NB···N2Ai0.87 (3)2.39 (3)3.253 (4)174 (3)
N3B—H2NB···N1Bii0.84 (3)2.41 (3)3.242 (3)172 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+3/2, y+3/2, z+1.
 

Footnotes

Additional correspondence author, email: suchada.c@psu.ac.th.

Acknowledgements

SJ, RC and SG acknowledge the DST [SR/S1/OC-13/2005] and CSIR [01(1913)/04/EMR-II], Government of India for financial support. SJ and RC thank the CSIR, Government of India, for research fellowships. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose Grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlackburn, G. M. & Gait, M. J. (1996). Nucleic Acids in Chemistry and Biology. Editors. Oxford University Press.  Google Scholar
First citationBrown, D. J. (1988). Fused Pyrimidines The Chemistry of Heterocyclic Compounds, Vol. 24, pt. 3. New York: John Wiley & Sons.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClews, C. J. B. & Cochran, W. (1948). Acta Cryst. 1, 4–11.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationGoswami, S., Jana, S., Das, N. K., Fun, H.-K. & Chantrapromma, S. (2008a). J. Mol. Struct. 876, 313–321.  Web of Science CSD CrossRef CAS Google Scholar
First citationGoswami, S., Jana, S., Hazra, A., Fun, H.-K. & Chantrapromma, S. (2008b). Supramol. Chem. 20, 495–500.  Web of Science CSD CrossRef CAS Google Scholar
First citationHurst, D. T. (1980). Chemistry and Biochemistry of Pyrimidines, Purines, Pteridines. Chichester: Wiley.  Google Scholar
First citationLigthart, G. B. W. L., Ohkawa, H., Sijbesma, R. P. & Meijer, E. W. (2005). J. Am. Chem. Soc. 127, 810–811.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLow, J. N., Quesada, A., Marchal, A., Melguizo, M., Nogueras, M. & Glidewell, C. (2002). Acta Cryst. C58, o289–o294.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSherrington, D. C. & Taskinen, K. A. (2001). Chem. Soc. Rev. 30, 83–93.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1659-o1660
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds