organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Cyclo­hexyl­methyl-2-cyclo­hexyl­sul­fanyl-5-iso­propyl­pyrimidin-4(3H)-one

aSchool of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China, and bSchool of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resources, (Ministry of Education), Yunnan University, Kunming 650091, People's Republic of China
*Correspondence e-mail: yphe@ynu.edu.cn

(Received 17 July 2008; accepted 8 August 2008; online 16 August 2008)

The title compound, C20H32N2OS, was obtained during the course of our investigation on 2-alkylsulfanyl-6-benzyl-3,4-dihydropyrimidin-4(3H)-ones (S–DABOs) showing favourable anti-HIV-1 activity. Both cyclo­hexane rings adopt chair conformations. The angle at the methyl­ene C atom linking the pyrimidine and cyclo­hexane ring is 113.7 (3)°, which is in the range considered optimal for maximum activity of non-nucleoside reverse transcriptase inhibitors. Inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into dimers and stabilize the crystal structure of the compound. In addition, an intra­molecular C—H⋯O hydrogen bond is observed.

Related literature

For related literature, see: He et al. (2004[He, Y. P., Chen, F. E., Yu, X. J., Wang, Y. P., de Clercq, E., Balzarini, J. & Pannecouque, C. (2004). Bioorg. Chem. 32, 536-548.]); Ettorre et al. (1996[Ettorre, A., Mai, A., Artico, M., Massa, S., De Montis, A. & La Colla, P. (1996). Acta Cryst. C52, 2115-2117.], 1998[Ettorre, A., Mai, A., Sbardella, G., Artico, M., La Colla, P. & Massa, S. (1998). Z. Kristallogr. New Cryst. Struct. 213, 593-595.]); Rao et al. (2007[Rao, Z.-K., Zhang, S.-S., He, Y.-P., Zheng, Y.-T. & Li, C. (2007). Acta Cryst. E63, o3942.]).

[Scheme 1]

Experimental

Crystal data
  • C20H32N2OS

  • Mr = 348.54

  • Triclinic, [P \overline 1]

  • a = 9.9549 (16) Å

  • b = 10.9542 (17) Å

  • c = 12.1054 (19) Å

  • α = 63.250 (2)°

  • β = 69.195 (2)°

  • γ = 63.033 (2)°

  • V = 1031.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 298 (2) K

  • 0.19 × 0.14 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.980

  • 9017 measured reflections

  • 4697 independent reflections

  • 2103 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.216

  • S = 0.88

  • 4697 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.86 1.91 2.761 (4) 170
C11—H11C⋯O1 0.96 2.53 3.115 (5) 119
Symmetry code: (i) -x, -y, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our ongoing investigation of S-DABO analogues which are a potent family of non-nucleoside reverse transcriptase inhibitors (NNRTIs), the title compound was synthesized as a novel inhibitor and shows favourable anti-HIV-1 activity.

The molecular structure is shown in Fig. 1. Both cyclohexane rings adopt the lowest energy chair conformation. C13—C14—C5 is 113.7 (3)°, which is in the range considered optimal for maximum activity of NNRTIs, viz. 110°–115° (Ettorre et al., 1996).

A comparision of the crystal structure of the title compound with some reported S-DABOs show that their spatial arrangement is similar (Ettorre et al., 1998; Rao et al., 2007). Although these molecules assume a similar conformation, they show differences in their activities. Thus, futher structural investigations are needed.

Intermolecular N—H···O hydrogen bonds link the molecules into dimers and stabilize the crystal structure of the compound. In addition, an intramolecular C—H···O hydrogen bond is observed.

Related literature top

For related literature, see: He et al. (2004); Ettorre et al. (1996, 1998); Rao et al. (2007).

Experimental top

With 2-cyclohexylacetonitrile as the starting material, the title compound was synthesized according to the procedure of He et al. (2004). Single crystals were obtained from a mixture of ethyl acetate and petroleum ether by slow evaporation at room temperature.

Refinement top

Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and the torsion angle was refined to fit the electron density; Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions with C—H = 0.97–0.98 Å and N—H = 0.86 Å, and refined in riding mode; Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of title compound showing the intermolecular hydrogen bonding (dashed lines)
6-Cyclohexylmethyl-2-cyclohexylsulfanyl-5-isopropylpyrimidin-4(3H)-one top
Crystal data top
C20H32N2OSZ = 2
Mr = 348.54F(000) = 380
Triclinic, P1Dx = 1.122 Mg m3
a = 9.9549 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9542 (17) ÅCell parameters from 4697 reflections
c = 12.1054 (19) Åθ = 1.9–28.3°
α = 63.250 (2)°µ = 0.17 mm1
β = 69.195 (2)°T = 298 K
γ = 63.033 (2)°Block, colourless
V = 1031.5 (3) Å30.19 × 0.14 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4697 independent reflections
Radiation source: fine-focus sealed tube2103 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1313
Tmin = 0.969, Tmax = 0.980k = 1314
9017 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.216H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.1P)2 + 0.3399P]
where P = (Fo2 + 2Fc2)/3
4697 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C20H32N2OSγ = 63.033 (2)°
Mr = 348.54V = 1031.5 (3) Å3
Triclinic, P1Z = 2
a = 9.9549 (16) ÅMo Kα radiation
b = 10.9542 (17) ŵ = 0.17 mm1
c = 12.1054 (19) ÅT = 298 K
α = 63.250 (2)°0.19 × 0.14 × 0.12 mm
β = 69.195 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4697 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2103 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.980Rint = 0.047
9017 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.216H-atom parameters constrained
S = 0.88Δρmax = 0.18 e Å3
4697 reflectionsΔρmin = 0.20 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc, and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.33860 (11)0.15552 (12)0.30395 (9)0.0638 (3)
O10.1114 (3)0.0731 (3)0.6134 (2)0.0669 (8)
N10.1985 (3)0.2729 (3)0.4863 (2)0.0473 (7)
N20.0978 (3)0.1230 (3)0.4780 (2)0.0514 (7)
H20.10690.06830.44050.062*
C80.0217 (4)0.1378 (4)0.5792 (3)0.0492 (8)
C70.2013 (4)0.1900 (4)0.4349 (3)0.0465 (8)
C130.0816 (3)0.2939 (3)0.5876 (3)0.0439 (8)
C90.0283 (4)0.2320 (4)0.6356 (3)0.0492 (8)
C100.1620 (4)0.2617 (4)0.7421 (4)0.0686 (11)
H100.14770.32550.77020.082*
C140.0877 (4)0.3902 (4)0.6429 (3)0.0522 (9)
H14A0.01490.45920.65850.063*
H14B0.15210.44560.58170.063*
C60.4652 (4)0.2481 (4)0.2780 (3)0.0551 (9)
H60.40210.34530.28330.066*
C150.1495 (4)0.3055 (4)0.7659 (3)0.0531 (9)
H150.09980.23290.81880.064*
C50.5566 (5)0.2656 (5)0.1449 (4)0.0801 (13)
H5A0.48710.32520.08570.096*
H5B0.61060.17060.13560.096*
C10.5698 (4)0.1675 (4)0.3730 (4)0.0675 (11)
H1A0.62760.06840.37340.081*
H1B0.50870.16280.45660.081*
C200.3203 (4)0.2241 (4)0.7442 (4)0.0671 (11)
H20A0.37200.29300.68760.081*
H20B0.34310.15590.70390.081*
C160.1092 (5)0.4041 (5)0.8375 (4)0.0779 (12)
H16A0.15370.47950.78570.094*
H16B0.00140.45140.85450.094*
C180.3361 (5)0.2395 (5)0.9399 (4)0.0860 (13)
H18A0.36730.18051.02100.103*
H18B0.38980.30840.89470.103*
C20.6803 (5)0.2449 (5)0.3405 (4)0.0806 (13)
H2A0.62250.34180.34550.097*
H2B0.74770.19100.40130.097*
C40.6718 (6)0.3368 (6)0.1148 (4)0.1012 (17)
H4A0.73430.33890.03200.121*
H4B0.61680.43690.11240.121*
C170.1662 (5)0.3218 (6)0.9600 (4)0.0909 (15)
H17A0.14300.39001.00030.109*
H17B0.11310.25381.01580.109*
C190.3812 (5)0.1413 (5)0.8657 (4)0.0842 (13)
H19A0.49220.09850.84660.101*
H19B0.34150.06240.91700.101*
C30.7749 (5)0.2569 (6)0.2104 (6)0.1060 (18)
H3A0.83830.16000.20680.127*
H3B0.84200.30900.19080.127*
C120.1652 (6)0.1229 (6)0.8561 (4)0.0948 (15)
H12A0.18530.06000.83350.142*
H12B0.24460.14830.92390.142*
H12C0.06790.07320.88230.142*
C110.3132 (4)0.3452 (5)0.6950 (5)0.0978 (16)
H11A0.30700.43200.62450.147*
H11B0.39490.37140.76130.147*
H11C0.33300.28460.66940.147*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0637 (6)0.0911 (8)0.0556 (6)0.0395 (6)0.0099 (4)0.0446 (6)
O10.0614 (16)0.088 (2)0.0772 (18)0.0426 (15)0.0112 (13)0.0516 (16)
N10.0487 (16)0.0526 (17)0.0457 (16)0.0201 (14)0.0045 (12)0.0222 (14)
N20.0519 (16)0.0645 (19)0.0499 (16)0.0248 (15)0.0003 (13)0.0329 (15)
C80.0451 (19)0.059 (2)0.051 (2)0.0177 (17)0.0052 (15)0.0282 (17)
C70.0478 (19)0.052 (2)0.0429 (18)0.0194 (16)0.0072 (14)0.0181 (16)
C130.0449 (18)0.046 (2)0.0426 (18)0.0123 (15)0.0075 (14)0.0211 (16)
C90.0432 (18)0.058 (2)0.053 (2)0.0192 (16)0.0007 (15)0.0295 (17)
C100.063 (2)0.082 (3)0.080 (3)0.037 (2)0.018 (2)0.055 (2)
C140.052 (2)0.053 (2)0.057 (2)0.0199 (17)0.0023 (16)0.0273 (18)
C60.061 (2)0.054 (2)0.052 (2)0.0245 (18)0.0040 (17)0.0273 (18)
C150.060 (2)0.062 (2)0.050 (2)0.0301 (18)0.0006 (16)0.0299 (18)
C50.099 (3)0.096 (3)0.058 (2)0.060 (3)0.017 (2)0.036 (2)
C10.058 (2)0.069 (3)0.072 (3)0.022 (2)0.015 (2)0.020 (2)
C200.064 (2)0.076 (3)0.066 (2)0.013 (2)0.0122 (19)0.040 (2)
C160.082 (3)0.091 (3)0.080 (3)0.021 (2)0.011 (2)0.060 (3)
C180.093 (3)0.109 (4)0.074 (3)0.038 (3)0.018 (2)0.043 (3)
C20.062 (3)0.075 (3)0.113 (4)0.023 (2)0.024 (3)0.035 (3)
C40.130 (4)0.115 (4)0.079 (3)0.089 (4)0.035 (3)0.045 (3)
C170.091 (3)0.128 (4)0.080 (3)0.033 (3)0.005 (2)0.072 (3)
C190.080 (3)0.094 (3)0.082 (3)0.012 (2)0.026 (2)0.043 (3)
C30.067 (3)0.101 (4)0.168 (6)0.042 (3)0.016 (3)0.078 (4)
C120.112 (4)0.116 (4)0.066 (3)0.066 (3)0.029 (3)0.048 (3)
C110.053 (3)0.095 (4)0.133 (4)0.021 (2)0.017 (3)0.062 (3)
Geometric parameters (Å, º) top
S1—C71.748 (3)C1—H1B0.9700
S1—C61.817 (3)C20—C191.513 (5)
O1—C81.233 (4)C20—H20A0.9700
N1—C71.299 (4)C20—H20B0.9700
N1—C131.381 (4)C16—C171.505 (6)
N2—C71.353 (4)C16—H16A0.9700
N2—C81.383 (4)C16—H16B0.9700
N2—H20.8600C18—C171.502 (6)
C8—C91.441 (4)C18—C191.520 (6)
C13—C91.364 (4)C18—H18A0.9700
C13—C141.512 (4)C18—H18B0.9700
C9—C101.518 (4)C2—C31.503 (6)
C10—C111.523 (6)C2—H2A0.9700
C10—C121.531 (6)C2—H2B0.9700
C10—H100.9800C4—C31.509 (7)
C14—C151.531 (5)C4—H4A0.9700
C14—H14A0.9700C4—H4B0.9700
C14—H14B0.9700C17—H17A0.9700
C6—C11.514 (5)C17—H17B0.9700
C6—C51.516 (5)C19—H19A0.9700
C6—H60.9800C19—H19B0.9700
C15—C201.508 (5)C3—H3A0.9700
C15—C161.511 (5)C3—H3B0.9700
C15—H150.9800C12—H12A0.9600
C5—C41.521 (6)C12—H12B0.9600
C5—H5A0.9700C12—H12C0.9600
C5—H5B0.9700C11—H11A0.9600
C1—C21.523 (5)C11—H11B0.9600
C1—H1A0.9700C11—H11C0.9600
C7—S1—C6103.08 (16)C19—C20—H20B109.2
C7—N1—C13117.1 (3)H20A—C20—H20B107.9
C7—N2—C8123.4 (3)C17—C16—C15112.2 (4)
C7—N2—H2118.3C17—C16—H16A109.2
C8—N2—H2118.3C15—C16—H16A109.2
O1—C8—N2119.8 (3)C17—C16—H16B109.2
O1—C8—C9125.8 (3)C15—C16—H16B109.2
N2—C8—C9114.4 (3)H16A—C16—H16B107.9
N1—C7—N2122.9 (3)C17—C18—C19111.7 (4)
N1—C7—S1123.0 (3)C17—C18—H18A109.3
N2—C7—S1114.1 (2)C19—C18—H18A109.3
C9—C13—N1123.6 (3)C17—C18—H18B109.3
C9—C13—C14122.5 (3)C19—C18—H18B109.3
N1—C13—C14113.8 (3)H18A—C18—H18B107.9
C13—C9—C8118.6 (3)C3—C2—C1111.1 (4)
C13—C9—C10123.7 (3)C3—C2—H2A109.4
C8—C9—C10117.7 (3)C1—C2—H2A109.4
C9—C10—C11110.7 (3)C3—C2—H2B109.4
C9—C10—C12112.6 (3)C1—C2—H2B109.4
C11—C10—C12112.1 (3)H2A—C2—H2B108.0
C9—C10—H10107.0C3—C4—C5112.2 (4)
C11—C10—H10107.0C3—C4—H4A109.2
C12—C10—H10107.0C5—C4—H4A109.2
C13—C14—C15113.7 (3)C3—C4—H4B109.2
C13—C14—H14A108.8C5—C4—H4B109.2
C15—C14—H14A108.8H4A—C4—H4B107.9
C13—C14—H14B108.8C18—C17—C16111.4 (3)
C15—C14—H14B108.8C18—C17—H17A109.3
H14A—C14—H14B107.7C16—C17—H17A109.3
C1—C6—C5111.3 (3)C18—C17—H17B109.3
C1—C6—S1113.1 (3)C16—C17—H17B109.3
C5—C6—S1106.7 (2)H17A—C17—H17B108.0
C1—C6—H6108.5C20—C19—C18111.9 (4)
C5—C6—H6108.5C20—C19—H19A109.2
S1—C6—H6108.5C18—C19—H19A109.2
C20—C15—C16110.4 (3)C20—C19—H19B109.2
C20—C15—C14112.2 (3)C18—C19—H19B109.2
C16—C15—C14111.6 (3)H19A—C19—H19B107.9
C20—C15—H15107.5C2—C3—C4110.2 (4)
C16—C15—H15107.5C2—C3—H3A109.6
C14—C15—H15107.5C4—C3—H3A109.6
C6—C5—C4111.2 (3)C2—C3—H3B109.6
C6—C5—H5A109.4C4—C3—H3B109.6
C4—C5—H5A109.4H3A—C3—H3B108.1
C6—C5—H5B109.4C10—C12—H12A109.5
C4—C5—H5B109.4C10—C12—H12B109.5
H5A—C5—H5B108.0H12A—C12—H12B109.5
C6—C1—C2110.4 (3)C10—C12—H12C109.5
C6—C1—H1A109.6H12A—C12—H12C109.5
C2—C1—H1A109.6H12B—C12—H12C109.5
C6—C1—H1B109.6C10—C11—H11A109.5
C2—C1—H1B109.6C10—C11—H11B109.5
H1A—C1—H1B108.1H11A—C11—H11B109.5
C15—C20—C19112.1 (3)C10—C11—H11C109.5
C15—C20—H20A109.2H11A—C11—H11C109.5
C19—C20—H20A109.2H11B—C11—H11C109.5
C15—C20—H20B109.2
C7—N2—C8—O1179.8 (3)C9—C13—C14—C1575.8 (4)
C7—N2—C8—C90.3 (5)N1—C13—C14—C15103.1 (3)
C13—N1—C7—N21.4 (5)C7—S1—C6—C174.8 (3)
C13—N1—C7—S1178.5 (2)C7—S1—C6—C5162.5 (3)
C8—N2—C7—N11.0 (5)C13—C14—C15—C2073.0 (4)
C8—N2—C7—S1178.9 (2)C13—C14—C15—C16162.6 (3)
C6—S1—C7—N14.1 (3)C1—C6—C5—C453.9 (5)
C6—S1—C7—N2176.0 (2)S1—C6—C5—C4177.7 (3)
C7—N1—C13—C90.4 (5)C5—C6—C1—C255.9 (4)
C7—N1—C13—C14179.3 (3)S1—C6—C1—C2176.0 (3)
N1—C13—C9—C80.9 (5)C16—C15—C20—C1954.5 (5)
C14—C13—C9—C8177.9 (3)C14—C15—C20—C19179.6 (3)
N1—C13—C9—C10176.4 (3)C20—C15—C16—C1755.8 (5)
C14—C13—C9—C104.8 (5)C14—C15—C16—C17178.7 (3)
O1—C8—C9—C13179.0 (3)C6—C1—C2—C358.1 (5)
N2—C8—C9—C131.2 (5)C6—C5—C4—C354.0 (5)
O1—C8—C9—C103.6 (5)C19—C18—C17—C1653.6 (5)
N2—C8—C9—C10176.2 (3)C15—C16—C17—C1855.8 (5)
C13—C9—C10—C11112.6 (4)C15—C20—C19—C1853.5 (5)
C8—C9—C10—C1164.7 (4)C17—C18—C19—C2052.6 (5)
C13—C9—C10—C12121.1 (4)C1—C2—C3—C457.6 (5)
C8—C9—C10—C1261.7 (5)C5—C4—C3—C255.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.861.912.761 (4)170
C11—H11C···O10.962.533.115 (5)119
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC20H32N2OS
Mr348.54
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.9549 (16), 10.9542 (17), 12.1054 (19)
α, β, γ (°)63.250 (2), 69.195 (2), 63.033 (2)
V3)1031.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.19 × 0.14 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.969, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
9017, 4697, 2103
Rint0.047
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.216, 0.88
No. of reflections4697
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.861.912.761 (4)169.6
C11—H11C···O10.962.533.115 (5)119.2
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

This work was supported by a fund from the National Natural Science Foundation of China (grant No. 30560179).

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEttorre, A., Mai, A., Artico, M., Massa, S., De Montis, A. & La Colla, P. (1996). Acta Cryst. C52, 2115–2117.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEttorre, A., Mai, A., Sbardella, G., Artico, M., La Colla, P. & Massa, S. (1998). Z. Kristallogr. New Cryst. Struct. 213, 593–595.  CAS Google Scholar
First citationHe, Y. P., Chen, F. E., Yu, X. J., Wang, Y. P., de Clercq, E., Balzarini, J. & Pannecouque, C. (2004). Bioorg. Chem. 32, 536–548.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRao, Z.-K., Zhang, S.-S., He, Y.-P., Zheng, Y.-T. & Li, C. (2007). Acta Cryst. E63, o3942.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds