metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1129-m1130

Bis{[(η5)-cyclo­pentadienyl]tris­(di­ethyl phosphito-κ3P,P′,P′′)cobaltate(III)-κ3O,O′,O′′]oxovanadium(IV)}-μ-oxalate

aDepartment of Chemistry, Illinois State University, Campus Box 4160, Normal, IL 61790-4160, USA
*Correspondence e-mail: mclauchlan@ilstu.edu

(Received 9 July 2008; accepted 31 July 2008; online 6 August 2008)

The title compound {systematic name: bis[1,4(η5)-cyclo­penta­dien­yl]hexa­kis(μ-diethyl phosphito)-1:2κ6P:O;3:4κ6O:P-μ-ox­alato-2:3κ4O1,O2:O1′,O2′-dioxido-2κO,3κO-1,4-dicobalt(III)-2,3-divanadium(IV)}, [Co2V2(C5H5)2(C2O4)(C4H10O3P)6O2], is an oxalate-bridged dinuclear complex of oxovanadium(IV). The geometric center of the dimer lies on an inversion center. The unique Co atom is bonded to three P atoms and a cyclo­penta­dienyl ring. The unique V atom has six O atom neighbors in an approximately octa­hedral arrangement; the V—O bond trans to the V=O bond is significantly lengthened.

Related literature

The title compound was synthesized by oxidation of the known {[Cp(POEt)3Co]VCl}2(μ-C2O4) dimer (Weberski & McLauchlan, 2007a[Weberski, M. P. Jr & McLauchlan, C. C. (2007a). Inorg. Chem. Commun. 10, 906-909.]). For related literature on vanadium-oxalate species, see: Salta et al. (1996[Salta, J., O'Connor, C. J., Li, S. & Zubieta, J. (1996). Inorg. Chim. Acta, 250, 303-310.]); Triki et al. (2000[Triki, S., Bérézovsky, F., Pala, J. S. & Garland, M. T. (2000). Inorg. Chim. Acta, 308, 31-36.]); Li et al. (2003[Li, G., Shi, Z., Xu, Y. & Feng, S. (2003). Inorg. Chem. 42, 1170-1174.]); Min et al. (2005[Min, K. S., Rhinegold, A. L. & Miller, J. S. (2005). Inorg. Chem. 44, 8433-8441.]); Tatiersky et al. (2005[Tatiersky, J., Schwendt, P., Sivák, M. & Marek, J. (2005). Dalton Trans. pp. 2305-2311.]); Yang et al. (2006[Yang, S., Li, G., Tian, S., Liao, F. & Lin, J. (2006). Eur. J. Inorg. Chem. 2850-2854.]); Costisor et al. (2001[Costisor, O., Brezeanu, M., Journaux, Y., Mereiter, K., Weinberger, P. & Linert, W. (2001). Eur. J. Inorg. Chem. pp. 2061-2066.]). For related literature on the ligand, see: Kläui (1979[Kläui, W. (1979). Z. Naturforsch. Teil B, 34, 1403-1407.]); Kläui et al. (1987[Kläui, W., Müller, A., Eberspach, W., Boese, R. & Goldberg, I. (1987). J. Am. Chem. Soc. 109, 164-169.]); Kamenar et al. (1988[Kamenar, B., Hergold-Brundic, A. & Bruvo, M. (1988). Z. Kristallogr. 184, 103-110.]); Ward et al. (1998[Ward, T. R., Duclos, S., Therrien, B. & Schenk, K. (1998). Organometallics, 17, 2490-2494.]); Kölle & Englert (2002[Kölle, U. & Englert, U. (2002). Eur. J. Inorg. Chem. pp. 165-170.]); Weberski & McLauchlan (2007b[Weberski, M. P. & McLauchlan, C. C. (2007b). Acta Cryst. E63, m1171-m1172.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2V2(C5H5)2(C2O4)(C4H10O3P)6O2]

  • Mr = 1292.48

  • Monoclinic, C 2/c

  • a = 28.364 (5) Å

  • b = 10.9825 (18) Å

  • c = 19.976 (3) Å

  • β = 117.412 (2)°

  • V = 5524.0 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.17 mm−1

  • T = 180 (2) K

  • 0.63 × 0.33 × 0.06 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2008[Bruker (2008). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.682, Tmax = 0.932

  • 26145 measured reflections

  • 6845 independent reflections

  • 5617 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.109

  • S = 1.00

  • 6845 reflections

  • 323 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected geometric parameters (Å, °)

V1—O3 1.594 (2)
V1—O1P 1.9932 (18)
V1—O3P 2.0145 (18)
V1—O1 2.0490 (18)
V1—O2 2.0727 (17)
V1—O2P 2.2077 (18)
O3—V1—O1P 97.46 (9)
O3—V1—O3P 99.73 (9)
O1P—V1—O3P 91.75 (7)
O3—V1—O1 99.26 (9)
O1P—V1—O1 89.59 (7)
O3P—V1—O1 160.61 (8)
O3—V1—O2 96.64 (9)
O1P—V1—O2 164.10 (8)
O3P—V1—O2 93.07 (7)
O1—V1—O2 80.91 (7)
O3—V1—O2P 177.13 (9)
O1P—V1—O2P 84.59 (7)
O3P—V1—O2P 82.17 (7)
O1—V1—O2P 78.71 (7)
O2—V1—O2P 81.07 (7)
C1—O1—V1 112.73 (16)
C2—O2—V1 112.22 (17)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, {[Cp(POEt)3Co]VO}2(µ-C2O4), (I), (Cp = cyclopentadienyl anion, C5H5-, POEt = diethylphosphite anion, C4H10O3P-) was synthesized by oxidation of the known {[Cp(POEt)3Co]VCl}2(µ-C2O4) dimer (Weberski & McLauchlan, 2007a).

Dozens of both terminal (e.g., Tatiersky et al., 2005; Costisor et al., 2006) and bridging (e.g., Salta et al., 1996; Triki et al., 2000; Li et al., 2003; Min et al., 2005; Yang et al., 2006) oxalato complexes have been reported for vanadium. The distances and angles in (I) (Table 1) are comparable to those in these known reported structures for oxalate bridging complexes. Similarly, the distances and angles in (I) are comparable to the previously reported structures involving the ligand (Kläui, 1979; Kläui et al., 1987; Kamenar et al., 1988; Ward et al., 1998; Kölle & Englert, 2002; Weberski & McLauchlan, 2007b)

The geometric center of the dimer lies on the inversion center (Fig. 1).

Some minor disorder, as may be expected, is present in the ethyl groups and the Cp ring, which results in some slightly elongated ellipsoids, but the disorder was not modeled.

Related literature top

The title compound was synthesized by oxidation of the known {[Cp(POEt)3Co]VCl}2(µ-C2O4) dimer (Weberski & McLauchlan, 2007a). For related literature on vanadium-oxalate species, see: Salta et al. (1996); Triki et al. (2000); Li et al. (2003); Min et al. (2005); Tatiersky et al. (2005); Yang et al. (2006); Costisor et al. (2001). For related literature on the ligand, see: Kläui (1979); Kläui et al. (1987); Kamenar et al. (1988); Ward et al. (1998); Kölle & Englert (2002); Weberski & McLauchlan (2007b).

Experimental top

Compound (I) was synthesized by serendipitous air oxidation of the known {[Cp(POEt)3Co]VCl}2(µ-C2O4) dimer (Weberski & McLauchlan, 2007a) in diethyl ether (Cp = cyclopentadienyl anion, C5H5-, POEt = diethylphosphite anion, C4H10O3P-). An amount of 44 mg of green, X-ray diffraction quality crystals of (I) were grown from the unoptimized slow evaporation of an ether solution at ca 300 K. The crystals shatter at 100 K. Anal. Calcd. for C36H70Co2O24P6V2: C, 33.45; H, 5.46. Found: C, 33.85; H, 5.65. The compound decomposes above 473 K. Infrared (cm-1): 441, 478, 590, 728, 771, 835, 930, 977, 1031, 1129, 1262, 1353, 1388, 1426, 1444, 1477, 1625, 2345, 2367, 2930, 2979, 3423. Magnetic susceptibility (Evans method, uncorrected), χm (χmT) 1.65 x 10-3 erg*G-2mol-1 (0.492). Electronic absorbance (UV/vis, CH3CN, λ, nm(ε, M-1 cm-1)): 242 (42000), 333 (5700), 485 (124), 656 (116).

Refinement top

The H atoms were geometrically placed (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2Uiso(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: APEX2 (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) showing 50% displacement ellipsoids (arbitrary spheres for the H atoms). Symmetry code: (i) -x, y, -z + 1/2.
Bis[1,4(η5)-cyclopentadienyl]hexakis(µ-diethyl phosphito)-1:2κ6P:O;3:4κ6O:P-µ-oxalato-2:3κ4O1,O2:O1',O2'- dioxido-2κO,3κO-1,4-dicobalt(III)-2,3-divanadium(IV) top
Crystal data top
[Co2V2(C5H5)2(C2O4)(C4H10O3P)6O2]F(000) = 2672
Mr = 1292.48Dx = 1.554 Mg m3
Monoclinic, C2/cMelting point: dec. 473(1) K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 28.364 (5) ÅCell parameters from 9976 reflections
b = 10.9825 (18) Åθ = 5.0–63.5°
c = 19.976 (3) ŵ = 1.17 mm1
β = 117.412 (2)°T = 180 K
V = 5524.0 (16) Å3Plate, green
Z = 40.63 × 0.33 × 0.06 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
6845 independent reflections
Radiation source: fine-focus sealed tube5617 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(APEX2; Bruker, 2008)
h = 3737
Tmin = 0.682, Tmax = 0.932k = 1414
26145 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0479P)2 + 16.0571P]
where P = (Fo2 + 2Fc2)/3
6845 reflections(Δ/σ)max = 0.001
323 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Co2V2(C5H5)2(C2O4)(C4H10O3P)6O2]V = 5524.0 (16) Å3
Mr = 1292.48Z = 4
Monoclinic, C2/cMo Kα radiation
a = 28.364 (5) ŵ = 1.17 mm1
b = 10.9825 (18) ÅT = 180 K
c = 19.976 (3) Å0.63 × 0.33 × 0.06 mm
β = 117.412 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
6845 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2008)
5617 reflections with I > 2σ(I)
Tmin = 0.682, Tmax = 0.932Rint = 0.037
26145 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0479P)2 + 16.0571P]
where P = (Fo2 + 2Fc2)/3
6845 reflectionsΔρmax = 0.70 e Å3
323 parametersΔρmin = 0.45 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.028671 (16)0.78146 (4)0.13941 (2)0.02455 (10)
Co10.176050 (13)0.74072 (3)0.16646 (2)0.02774 (10)
P10.11499 (3)0.60266 (6)0.12884 (4)0.02764 (14)
P20.15939 (3)0.78092 (6)0.26021 (4)0.02754 (14)
P30.11777 (3)0.87517 (6)0.09797 (4)0.02816 (15)
O10.00650 (7)0.66231 (15)0.19874 (10)0.0286 (4)
O20.01090 (7)0.90562 (15)0.20266 (10)0.0275 (4)
C10.00000.7134 (3)0.25000.0245 (7)
C20.00000.8544 (3)0.25000.0248 (7)
O30.02642 (8)0.79215 (18)0.06448 (11)0.0379 (4)
O1P0.05862 (7)0.64296 (16)0.10672 (11)0.0309 (4)
O1A0.13253 (8)0.50150 (17)0.19333 (11)0.0375 (4)
O2A0.11265 (8)0.5267 (2)0.05926 (12)0.0428 (5)
C1A0.09433 (16)0.4095 (3)0.1891 (2)0.0563 (9)
H1AA0.05800.44300.16130.068*
H1AB0.09700.33820.16060.068*
C2A0.1032 (2)0.3716 (6)0.2616 (3)0.105 (2)
H2AA0.07720.30890.25670.157*
H2AB0.09940.44150.28930.157*
H2AC0.13920.33830.28920.157*
C3A0.06647 (12)0.5172 (3)0.01328 (17)0.0377 (6)
H3AA0.04200.58590.02040.045*
H3AB0.04740.44020.01630.045*
C4A0.08407 (16)0.5198 (4)0.0731 (2)0.0567 (9)
H4AA0.05300.51450.12280.085*
H4AB0.10770.45060.06630.085*
H4AC0.10310.59600.06950.085*
O2P0.10274 (7)0.76760 (15)0.24648 (10)0.0273 (4)
O1B0.18059 (8)0.91352 (19)0.29463 (14)0.0444 (5)
O2B0.19748 (8)0.6950 (2)0.32940 (11)0.0397 (5)
C1B0.14588 (12)1.0097 (3)0.29536 (18)0.0403 (6)
H1BA0.10910.99280.25660.048*
H1BB0.15701.08810.28260.048*
C2B0.1473 (2)1.0196 (5)0.3698 (3)0.0848 (15)
H2BA0.12621.09000.37020.127*
H2BB0.18411.03010.40870.127*
H2BC0.13250.94540.38000.127*
C3B0.18998 (16)0.6875 (4)0.3955 (2)0.0542 (9)
H3BA0.15160.68100.38060.065*
H3BB0.20380.76210.42610.065*
C4B0.21855 (14)0.5785 (3)0.4410 (2)0.0535 (8)
H4BA0.21620.57790.48840.080*
H4BB0.25590.58180.45190.080*
H4BC0.20220.50430.41240.080*
O3P0.07192 (7)0.90314 (15)0.11549 (10)0.0287 (4)
O1C0.09368 (8)0.83591 (19)0.01116 (11)0.0396 (5)
O2C0.14763 (8)1.00128 (18)0.10399 (14)0.0469 (6)
C1C0.04967 (13)0.9052 (3)0.04630 (17)0.0448 (7)
H1CA0.06370.97460.06330.054*
H1CB0.02700.93780.02480.054*
C2C0.01791 (18)0.8257 (3)0.1108 (2)0.0791 (15)
H2CA0.01090.87300.15000.119*
H2CB0.00280.75900.09420.119*
H2CC0.04060.79210.13120.119*
C3C0.12391 (11)1.1198 (2)0.09617 (17)0.0337 (6)
H3CA0.12951.15000.14600.040*
H3CB0.08521.11520.06240.040*
C4C0.14959 (12)1.2044 (3)0.0636 (2)0.0435 (7)
H4CA0.13561.28690.06070.065*
H4CB0.14191.17670.01290.065*
H4CC0.18811.20480.09590.065*
C320.24880 (11)0.6532 (3)0.22456 (19)0.0429 (7)
H320.25760.59900.26560.051*
C330.25670 (12)0.7796 (3)0.2303 (2)0.0523 (9)
H330.27180.82550.27570.063*
C340.23856 (15)0.8257 (4)0.1582 (3)0.0677 (13)
H340.23940.90880.14550.081*
C350.21853 (15)0.7274 (5)0.1062 (2)0.0696 (13)
H350.20300.73290.05290.084*
C360.22599 (12)0.6204 (3)0.1488 (2)0.0512 (8)
H360.21700.54010.12930.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0245 (2)0.02041 (19)0.0309 (2)0.00117 (15)0.01458 (17)0.00023 (15)
Co10.02674 (18)0.02207 (16)0.0390 (2)0.00463 (12)0.01910 (15)0.00510 (13)
P10.0314 (3)0.0205 (3)0.0336 (3)0.0033 (2)0.0171 (3)0.0002 (2)
P20.0246 (3)0.0253 (3)0.0329 (3)0.0018 (2)0.0135 (3)0.0004 (2)
P30.0298 (3)0.0221 (3)0.0388 (4)0.0052 (2)0.0212 (3)0.0071 (3)
O10.0325 (9)0.0175 (8)0.0429 (10)0.0020 (6)0.0236 (8)0.0026 (7)
O20.0315 (9)0.0180 (7)0.0401 (10)0.0001 (6)0.0225 (8)0.0006 (7)
C10.0187 (14)0.0185 (14)0.0369 (18)0.0000.0133 (13)0.000
C20.0228 (15)0.0172 (14)0.0347 (18)0.0000.0135 (14)0.000
O30.0314 (10)0.0348 (10)0.0419 (11)0.0034 (8)0.0120 (9)0.0001 (8)
O1P0.0326 (9)0.0253 (8)0.0389 (10)0.0003 (7)0.0198 (8)0.0065 (7)
O1A0.0433 (11)0.0241 (9)0.0435 (11)0.0020 (8)0.0185 (9)0.0064 (8)
O2A0.0421 (11)0.0443 (12)0.0396 (11)0.0125 (9)0.0168 (9)0.0094 (9)
C1A0.072 (2)0.0375 (17)0.058 (2)0.0188 (16)0.0285 (19)0.0034 (15)
C2A0.118 (4)0.133 (5)0.067 (3)0.067 (4)0.046 (3)0.004 (3)
C3A0.0390 (15)0.0340 (14)0.0414 (15)0.0036 (11)0.0196 (12)0.0083 (12)
C4A0.063 (2)0.068 (2)0.0461 (19)0.0039 (18)0.0307 (17)0.0128 (17)
O2P0.0272 (9)0.0254 (8)0.0306 (9)0.0009 (7)0.0144 (7)0.0002 (7)
O1B0.0359 (11)0.0347 (10)0.0677 (14)0.0093 (8)0.0282 (10)0.0180 (10)
O2B0.0324 (10)0.0495 (12)0.0351 (10)0.0043 (9)0.0138 (8)0.0074 (9)
C1B0.0377 (15)0.0304 (13)0.0549 (18)0.0032 (11)0.0232 (14)0.0044 (12)
C2B0.113 (4)0.084 (3)0.079 (3)0.037 (3)0.063 (3)0.007 (3)
C3B0.066 (2)0.054 (2)0.0445 (18)0.0085 (17)0.0268 (17)0.0085 (16)
C4B0.0481 (19)0.061 (2)0.0481 (19)0.0047 (16)0.0192 (15)0.0151 (16)
O3P0.0307 (9)0.0229 (8)0.0380 (10)0.0055 (7)0.0205 (8)0.0054 (7)
O1C0.0442 (11)0.0435 (11)0.0368 (11)0.0169 (9)0.0234 (9)0.0103 (9)
O2C0.0412 (11)0.0224 (9)0.0897 (18)0.0063 (8)0.0407 (12)0.0144 (10)
C1C0.0518 (18)0.0427 (16)0.0379 (16)0.0138 (14)0.0190 (14)0.0120 (13)
C2C0.076 (3)0.0360 (18)0.077 (3)0.0013 (18)0.006 (2)0.0073 (18)
C3C0.0346 (13)0.0231 (12)0.0444 (15)0.0049 (10)0.0191 (12)0.0044 (11)
C4C0.0403 (16)0.0289 (13)0.0593 (19)0.0005 (12)0.0212 (14)0.0141 (13)
C320.0280 (13)0.0427 (16)0.0587 (19)0.0143 (12)0.0206 (13)0.0114 (14)
C330.0287 (14)0.0448 (17)0.085 (3)0.0015 (13)0.0273 (16)0.0089 (17)
C340.047 (2)0.050 (2)0.132 (4)0.0157 (16)0.063 (2)0.034 (2)
C350.046 (2)0.122 (4)0.057 (2)0.035 (2)0.0371 (18)0.028 (2)
C360.0349 (16)0.0471 (18)0.076 (2)0.0107 (13)0.0294 (16)0.0104 (17)
Geometric parameters (Å, º) top
V1—O31.594 (2)C4A—H4AB0.9800
V1—O1P1.9932 (18)C4A—H4AC0.9800
V1—O3P2.0145 (18)O1B—C1B1.449 (3)
V1—O12.0490 (18)O2B—C3B1.433 (4)
V1—O22.0727 (17)C1B—C2B1.473 (5)
V1—O2P2.2077 (18)C1B—H1BA0.9900
Co1—C352.063 (3)C1B—H1BB0.9900
Co1—C342.077 (3)C2B—H2BA0.9800
Co1—C322.079 (3)C2B—H2BB0.9800
Co1—C362.082 (3)C2B—H2BC0.9800
Co1—C332.087 (3)C3B—C4B1.496 (5)
Co1—P12.1597 (8)C3B—H3BA0.9900
Co1—P32.1684 (7)C3B—H3BB0.9900
Co1—P22.1774 (8)C4B—H4BA0.9800
P1—O1P1.5156 (19)C4B—H4BB0.9800
P1—O2A1.596 (2)C4B—H4BC0.9800
P1—O1A1.597 (2)O1C—C1C1.461 (3)
P2—O2P1.5075 (18)O2C—C3C1.441 (3)
P2—O1B1.604 (2)C1C—C2C1.471 (5)
P2—O2B1.610 (2)C1C—H1CA0.9900
P3—O3P1.5257 (18)C1C—H1CB0.9900
P3—O2C1.599 (2)C2C—H2CA0.9800
P3—O1C1.603 (2)C2C—H2CB0.9800
O1—C11.253 (2)C2C—H2CC0.9800
O2—C21.255 (2)C3C—C4C1.501 (4)
C1—O1i1.254 (2)C3C—H3CA0.9900
C1—C21.549 (4)C3C—H3CB0.9900
C2—O2i1.255 (2)C4C—H4CA0.9800
O1A—C1A1.455 (4)C4C—H4CB0.9800
O2A—C3A1.442 (3)C4C—H4CC0.9800
C1A—C2A1.415 (5)C32—C361.391 (5)
C1A—H1AA0.9900C32—C331.402 (5)
C1A—H1AB0.9900C32—H320.9500
C2A—H2AA0.9800C33—C341.383 (6)
C2A—H2AB0.9800C33—H330.9500
C2A—H2AC0.9800C34—C351.422 (7)
C3A—C4A1.492 (4)C34—H340.9500
C3A—H3AA0.9900C35—C361.409 (6)
C3A—H3AB0.9900C35—H350.9500
C4A—H4AA0.9800C36—H360.9500
O3—V1—O1P97.46 (9)C3A—C4A—H4AA109.5
O3—V1—O3P99.73 (9)C3A—C4A—H4AB109.5
O1P—V1—O3P91.75 (7)H4AA—C4A—H4AB109.5
O3—V1—O199.26 (9)C3A—C4A—H4AC109.5
O1P—V1—O189.59 (7)H4AA—C4A—H4AC109.5
O3P—V1—O1160.61 (8)H4AB—C4A—H4AC109.5
O3—V1—O296.64 (9)P2—O2P—V1128.96 (11)
O1P—V1—O2164.10 (8)C1B—O1B—P2122.94 (18)
O3P—V1—O293.07 (7)C3B—O2B—P2119.9 (2)
O1—V1—O280.91 (7)O1B—C1B—C2B111.2 (3)
O3—V1—O2P177.13 (9)O1B—C1B—H1BA109.4
O1P—V1—O2P84.59 (7)C2B—C1B—H1BA109.4
O3P—V1—O2P82.17 (7)O1B—C1B—H1BB109.4
O1—V1—O2P78.71 (7)C2B—C1B—H1BB109.4
O2—V1—O2P81.07 (7)H1BA—C1B—H1BB108.0
C35—Co1—C3440.17 (18)C1B—C2B—H2BA109.5
C35—Co1—C3266.22 (14)C1B—C2B—H2BB109.5
C34—Co1—C3265.66 (14)H2BA—C2B—H2BB109.5
C35—Co1—C3639.74 (16)C1B—C2B—H2BC109.5
C34—Co1—C3666.39 (15)H2BA—C2B—H2BC109.5
C32—Co1—C3639.06 (14)H2BB—C2B—H2BC109.5
C35—Co1—C3366.45 (17)O2B—C3B—C4B109.7 (3)
C34—Co1—C3338.81 (17)O2B—C3B—H3BA109.7
C32—Co1—C3339.33 (13)C4B—C3B—H3BA109.7
C36—Co1—C3366.01 (14)O2B—C3B—H3BB109.7
C35—Co1—P1109.73 (16)C4B—C3B—H3BB109.7
C34—Co1—P1149.89 (15)H3BA—C3B—H3BB108.2
C32—Co1—P1107.49 (9)C3B—C4B—H4BA109.5
C36—Co1—P189.69 (10)C3B—C4B—H4BB109.5
C33—Co1—P1146.52 (10)H4BA—C4B—H4BB109.5
C35—Co1—P399.24 (11)C3B—C4B—H4BC109.5
C34—Co1—P394.27 (10)H4BA—C4B—H4BC109.5
C32—Co1—P3159.92 (9)H4BB—C4B—H4BC109.5
C36—Co1—P3134.90 (11)P3—O3P—V1126.68 (10)
C33—Co1—P3123.29 (10)C1C—O1C—P3119.63 (19)
P1—Co1—P390.13 (3)C3C—O2C—P3124.74 (17)
C35—Co1—P2158.80 (14)O1C—C1C—C2C109.7 (3)
C34—Co1—P2120.59 (15)O1C—C1C—H1CA109.7
C32—Co1—P299.57 (10)C2C—C1C—H1CA109.7
C36—Co1—P2135.08 (11)O1C—C1C—H1CB109.7
C33—Co1—P292.52 (11)C2C—C1C—H1CB109.7
P1—Co1—P289.13 (3)H1CA—C1C—H1CB108.2
P3—Co1—P290.02 (3)C1C—C2C—H2CA109.5
O1P—P1—O2A106.46 (11)C1C—C2C—H2CB109.5
O1P—P1—O1A109.47 (11)H2CA—C2C—H2CB109.5
O2A—P1—O1A102.22 (12)C1C—C2C—H2CC109.5
O1P—P1—Co1117.76 (8)H2CA—C2C—H2CC109.5
O2A—P1—Co1112.03 (9)H2CB—C2C—H2CC109.5
O1A—P1—Co1107.79 (8)O2C—C3C—C4C108.1 (2)
O2P—P2—O1B108.90 (10)O2C—C3C—H3CA110.1
O2P—P2—O2B109.71 (11)C4C—C3C—H3CA110.1
O1B—P2—O2B101.13 (12)O2C—C3C—H3CB110.1
O2P—P2—Co1117.32 (8)C4C—C3C—H3CB110.1
O1B—P2—Co1111.45 (9)H3CA—C3C—H3CB108.4
O2B—P2—Co1107.08 (8)C3C—C4C—H4CA109.5
O3P—P3—O2C106.64 (10)C3C—C4C—H4CB109.5
O3P—P3—O1C108.57 (11)H4CA—C4C—H4CB109.5
O2C—P3—O1C105.17 (13)C3C—C4C—H4CC109.5
O3P—P3—Co1118.37 (7)H4CA—C4C—H4CC109.5
O2C—P3—Co1108.60 (8)H4CB—C4C—H4CC109.5
O1C—P3—Co1108.72 (8)C36—C32—C33108.8 (3)
C1—O1—V1112.73 (16)C36—C32—Co170.59 (17)
C2—O2—V1112.22 (17)C33—C32—Co170.64 (17)
O1—C1—O1i126.8 (3)C36—C32—H32125.6
O1—C1—C2116.59 (15)C33—C32—H32125.6
O1i—C1—C2116.59 (15)Co1—C32—H32124.8
O2—C2—O2i126.8 (3)C34—C33—C32108.0 (4)
O2—C2—C1116.60 (15)C34—C33—Co170.2 (2)
O2i—C2—C1116.60 (15)C32—C33—Co170.03 (17)
P1—O1P—V1132.76 (11)C34—C33—H33126.0
C1A—O1A—P1119.3 (2)C32—C33—H33126.0
C3A—O2A—P1124.59 (18)Co1—C33—H33125.3
C2A—C1A—O1A111.6 (3)C33—C34—C35108.3 (3)
C2A—C1A—H1AA109.3C33—C34—Co170.99 (19)
O1A—C1A—H1AA109.3C35—C34—Co169.4 (2)
C2A—C1A—H1AB109.3C33—C34—H34125.8
O1A—C1A—H1AB109.3C35—C34—H34125.8
H1AA—C1A—H1AB108.0Co1—C34—H34125.4
C1A—C2A—H2AA109.5C36—C35—C34107.1 (3)
C1A—C2A—H2AB109.5C36—C35—Co170.88 (19)
H2AA—C2A—H2AB109.5C34—C35—Co170.5 (2)
C1A—C2A—H2AC109.5C36—C35—H35126.4
H2AA—C2A—H2AC109.5C34—C35—H35126.4
H2AB—C2A—H2AC109.5Co1—C35—H35123.9
O2A—C3A—C4A108.6 (3)C32—C36—C35107.8 (3)
O2A—C3A—H3AA110.0C32—C36—Co170.35 (17)
C4A—C3A—H3AA110.0C35—C36—Co169.38 (19)
O2A—C3A—H3AB110.0C32—C36—H36126.1
C4A—C3A—H3AB110.0C35—C36—H36126.1
H3AA—C3A—H3AB108.3Co1—C36—H36125.7
C35—Co1—P1—O1P128.14 (15)O3P—V1—O2P—P232.47 (13)
C34—Co1—P1—O1P127.0 (2)O1—V1—O2P—P2150.71 (14)
C32—Co1—P1—O1P161.50 (13)O2—V1—O2P—P2126.85 (14)
C36—Co1—P1—O1P163.17 (14)O2P—P2—O1B—C1B12.3 (3)
C33—Co1—P1—O1P155.0 (2)O2B—P2—O1B—C1B127.8 (2)
P3—Co1—P1—O1P28.28 (9)Co1—P2—O1B—C1B118.7 (2)
P2—Co1—P1—O1P61.74 (9)O2P—P2—O2B—C3B42.2 (3)
C35—Co1—P1—O2A4.20 (15)O1B—P2—O2B—C3B72.7 (3)
C34—Co1—P1—O2A3.1 (2)Co1—P2—O2B—C3B170.6 (2)
C32—Co1—P1—O2A74.56 (13)P2—O1B—C1B—C2B99.8 (4)
C36—Co1—P1—O2A39.23 (14)P2—O2B—C3B—C4B163.9 (2)
C33—Co1—P1—O2A81.1 (2)O2C—P3—O3P—V1165.84 (14)
P3—Co1—P1—O2A95.66 (9)O1C—P3—O3P—V181.30 (15)
P2—Co1—P1—O2A174.32 (9)Co1—P3—O3P—V143.18 (16)
C35—Co1—P1—O1A107.49 (14)O3—V1—O3P—P3109.89 (15)
C34—Co1—P1—O1A108.6 (2)O1P—V1—O3P—P312.01 (14)
C32—Co1—P1—O1A37.13 (13)O1—V1—O3P—P381.7 (3)
C36—Co1—P1—O1A72.46 (14)O2—V1—O3P—P3152.83 (14)
C33—Co1—P1—O1A30.6 (2)O2P—V1—O3P—P372.28 (14)
P3—Co1—P1—O1A152.64 (9)O3P—P3—O1C—C1C44.0 (2)
P2—Co1—P1—O1A62.63 (9)O2C—P3—O1C—C1C69.8 (2)
C35—Co1—P2—O2P173.1 (4)Co1—P3—O1C—C1C174.1 (2)
C34—Co1—P2—O2P151.66 (14)O3P—P3—O2C—C3C22.9 (3)
C32—Co1—P2—O2P141.04 (12)O1C—P3—O2C—C3C92.3 (3)
C36—Co1—P2—O2P122.13 (16)Co1—P3—O2C—C3C151.5 (2)
C33—Co1—P2—O2P179.98 (13)P3—O1C—C1C—C2C152.3 (3)
P1—Co1—P2—O2P33.44 (8)P3—O2C—C3C—C4C149.4 (2)
P3—Co1—P2—O2P56.69 (8)C35—Co1—C32—C3637.8 (2)
C35—Co1—P2—O1B46.6 (4)C34—Co1—C32—C3681.9 (3)
C34—Co1—P2—O1B25.17 (15)C33—Co1—C32—C36119.1 (3)
C32—Co1—P2—O1B92.47 (13)P1—Co1—C32—C3666.6 (2)
C36—Co1—P2—O1B111.37 (17)P3—Co1—C32—C3683.8 (3)
C33—Co1—P2—O1B53.52 (14)P2—Co1—C32—C36158.71 (19)
P1—Co1—P2—O1B159.94 (9)C35—Co1—C32—C3381.3 (3)
P3—Co1—P2—O1B69.81 (9)C34—Co1—C32—C3337.1 (2)
C35—Co1—P2—O2B63.1 (4)C36—Co1—C32—C33119.1 (3)
C34—Co1—P2—O2B84.57 (15)P1—Co1—C32—C33174.3 (2)
C32—Co1—P2—O2B17.27 (13)P3—Co1—C32—C3335.3 (4)
C36—Co1—P2—O2B1.64 (17)P2—Co1—C32—C3382.2 (2)
C33—Co1—P2—O2B56.21 (13)C36—C32—C33—C340.3 (3)
P1—Co1—P2—O2B90.33 (9)Co1—C32—C33—C3460.2 (2)
P3—Co1—P2—O2B179.54 (9)C36—C32—C33—Co160.5 (2)
C35—Co1—P3—O3P172.13 (18)C35—Co1—C33—C3438.0 (2)
C34—Co1—P3—O3P147.70 (17)C32—Co1—C33—C34118.7 (3)
C32—Co1—P3—O3P146.0 (3)C36—Co1—C33—C3481.6 (3)
C36—Co1—P3—O3P151.80 (16)P1—Co1—C33—C34128.5 (2)
C33—Co1—P3—O3P120.05 (16)P3—Co1—C33—C3447.6 (3)
P1—Co1—P3—O3P62.11 (9)P2—Co1—C33—C34139.3 (2)
P2—Co1—P3—O3P27.02 (9)C35—Co1—C33—C3280.7 (2)
C35—Co1—P3—O2C66.20 (18)C34—Co1—C33—C32118.7 (3)
C34—Co1—P3—O2C26.03 (18)C36—Co1—C33—C3237.1 (2)
C32—Co1—P3—O2C24.4 (3)P1—Co1—C33—C329.8 (3)
C36—Co1—P3—O2C86.53 (17)P3—Co1—C33—C32166.27 (17)
C33—Co1—P3—O2C1.62 (17)P2—Co1—C33—C32102.1 (2)
P1—Co1—P3—O2C176.22 (10)C32—C33—C34—C350.5 (4)
P2—Co1—P3—O2C94.65 (10)Co1—C33—C34—C3559.6 (2)
C35—Co1—P3—O1C47.72 (18)C32—C33—C34—Co160.1 (2)
C34—Co1—P3—O1C87.88 (17)C35—Co1—C34—C33119.0 (3)
C32—Co1—P3—O1C89.6 (3)C32—Co1—C34—C3337.6 (2)
C36—Co1—P3—O1C27.39 (17)C36—Co1—C34—C3380.5 (2)
C33—Co1—P3—O1C115.54 (16)P1—Co1—C34—C33120.6 (3)
P1—Co1—P3—O1C62.30 (9)P3—Co1—C34—C33141.8 (2)
P2—Co1—P3—O1C151.43 (9)P2—Co1—C34—C3349.2 (2)
O3—V1—O1—C1104.15 (14)C32—Co1—C34—C3581.4 (2)
O1P—V1—O1—C1158.36 (13)C36—Co1—C34—C3538.4 (2)
O3P—V1—O1—C164.2 (3)C33—Co1—C34—C35119.0 (3)
O2—V1—O1—C18.84 (12)P1—Co1—C34—C351.6 (4)
O2P—V1—O1—C173.79 (12)P3—Co1—C34—C3599.3 (2)
O3—V1—O2—C2103.96 (13)P2—Co1—C34—C35168.18 (19)
O1P—V1—O2—C248.4 (3)C33—C34—C35—C361.2 (4)
O3P—V1—O2—C2155.87 (12)Co1—C34—C35—C3661.8 (2)
O1—V1—O2—C25.59 (11)C33—C34—C35—Co160.6 (2)
O2P—V1—O2—C274.30 (12)C34—Co1—C35—C36117.0 (3)
V1—O1—C1—O1i169.74 (13)C32—Co1—C35—C3637.1 (2)
V1—O1—C1—C210.26 (13)C33—Co1—C35—C3680.2 (2)
V1—O2—C2—O2i177.97 (13)P1—Co1—C35—C3663.9 (2)
V1—O2—C2—C12.03 (13)P3—Co1—C35—C36157.4 (2)
O1—C1—C2—O25.76 (13)P2—Co1—C35—C3687.8 (5)
O1i—C1—C2—O2174.24 (13)C32—Co1—C35—C3479.8 (2)
O1—C1—C2—O2i174.24 (13)C36—Co1—C35—C34117.0 (3)
O1i—C1—C2—O2i5.76 (13)C33—Co1—C35—C3436.7 (2)
O2A—P1—O1P—V1155.10 (15)P1—Co1—C35—C34179.1 (2)
O1A—P1—O1P—V195.11 (16)P3—Co1—C35—C3485.7 (2)
Co1—P1—O1P—V128.41 (18)P2—Co1—C35—C3429.2 (5)
O3—V1—O1P—P1153.83 (16)C33—C32—C36—C351.1 (3)
O3P—V1—O1P—P153.77 (16)Co1—C32—C36—C3559.5 (2)
O1—V1—O1P—P1106.88 (16)C33—C32—C36—Co160.6 (2)
O2—V1—O1P—P153.9 (4)C34—C35—C36—C321.4 (4)
O2P—V1—O1P—P128.19 (16)Co1—C35—C36—C3260.1 (2)
O1P—P1—O1A—C1A39.5 (3)C34—C35—C36—Co161.5 (2)
O2A—P1—O1A—C1A73.0 (3)C35—Co1—C36—C32118.8 (3)
Co1—P1—O1A—C1A168.8 (2)C34—Co1—C36—C3279.9 (2)
O1P—P1—O2A—C3A8.5 (3)C33—Co1—C36—C3237.3 (2)
O1A—P1—O2A—C3A123.3 (2)P1—Co1—C36—C32118.93 (19)
Co1—P1—O2A—C3A121.6 (2)P3—Co1—C36—C32151.20 (16)
P1—O1A—C1A—C2A148.7 (4)P2—Co1—C36—C3230.5 (3)
P1—O2A—C3A—C4A141.6 (3)C34—Co1—C36—C3538.9 (3)
O1B—P2—O2P—V1101.82 (15)C32—Co1—C36—C35118.8 (3)
O2B—P2—O2P—V1148.35 (13)C33—Co1—C36—C3581.4 (3)
Co1—P2—O2P—V125.91 (15)P1—Co1—C36—C35122.3 (2)
O3—V1—O2P—P2164.0 (17)P3—Co1—C36—C3532.4 (3)
O1P—V1—O2P—P260.05 (13)P2—Co1—C36—C35149.2 (2)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Co2V2(C5H5)2(C2O4)(C4H10O3P)6O2]
Mr1292.48
Crystal system, space groupMonoclinic, C2/c
Temperature (K)180
a, b, c (Å)28.364 (5), 10.9825 (18), 19.976 (3)
β (°) 117.412 (2)
V3)5524.0 (16)
Z4
Radiation typeMo Kα
µ (mm1)1.17
Crystal size (mm)0.63 × 0.33 × 0.06
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(APEX2; Bruker, 2008)
Tmin, Tmax0.682, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
26145, 6845, 5617
Rint0.037
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.109, 1.00
No. of reflections6845
No. of parameters323
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0479P)2 + 16.0571P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.70, 0.45

Computer programs: APEX2 (Bruker, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
V1—O31.594 (2)V1—O2P2.2077 (18)
V1—O1P1.9932 (18)O1—C11.253 (2)
V1—O3P2.0145 (18)O2—C21.255 (2)
V1—O12.0490 (18)C1—C21.549 (4)
V1—O22.0727 (17)
O3—V1—O1P97.46 (9)O3—V1—O2P177.13 (9)
O3—V1—O3P99.73 (9)O1P—V1—O2P84.59 (7)
O1P—V1—O3P91.75 (7)O3P—V1—O2P82.17 (7)
O3—V1—O199.26 (9)O1—V1—O2P78.71 (7)
O1P—V1—O189.59 (7)O2—V1—O2P81.07 (7)
O3P—V1—O1160.61 (8)C1—O1—V1112.73 (16)
O3—V1—O296.64 (9)C2—O2—V1112.22 (17)
O1P—V1—O2164.10 (8)O1—C1—C2116.59 (15)
O3P—V1—O293.07 (7)O2—C2—C1116.60 (15)
O1—V1—O280.91 (7)
V1—O1—C1—C210.26 (13)V1—O2—C2—C12.03 (13)
V1—O2—C2—O2i177.97 (13)O1—C1—C2—O25.76 (13)
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

This work was supported by Illinois State University, the American Chemical Society Petroleum Research Fund (46064-B3) and the National Science Foundation (US, CHE-0645081). The authors also thank the STaRBURSTT Cyberdiffraction Consortium and Dr M. Zeller (Youngstown State University) for the collection of the X-ray intensity data.

References

First citationBruker (2008). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCostisor, O., Brezeanu, M., Journaux, Y., Mereiter, K., Weinberger, P. & Linert, W. (2001). Eur. J. Inorg. Chem. pp. 2061–2066.  CrossRef Google Scholar
First citationKamenar, B., Hergold-Brundic, A. & Bruvo, M. (1988). Z. Kristallogr. 184, 103–110.  CrossRef CAS Google Scholar
First citationKläui, W. (1979). Z. Naturforsch. Teil B, 34, 1403–1407.  Google Scholar
First citationKläui, W., Müller, A., Eberspach, W., Boese, R. & Goldberg, I. (1987). J. Am. Chem. Soc. 109, 164–169.  CSD CrossRef Google Scholar
First citationKölle, U. & Englert, U. (2002). Eur. J. Inorg. Chem. pp. 165–170.  Google Scholar
First citationLi, G., Shi, Z., Xu, Y. & Feng, S. (2003). Inorg. Chem. 42, 1170–1174.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMin, K. S., Rhinegold, A. L. & Miller, J. S. (2005). Inorg. Chem. 44, 8433–8441.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSalta, J., O'Connor, C. J., Li, S. & Zubieta, J. (1996). Inorg. Chim. Acta, 250, 303–310.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTatiersky, J., Schwendt, P., Sivák, M. & Marek, J. (2005). Dalton Trans. pp. 2305–2311.  Web of Science CSD CrossRef Google Scholar
First citationTriki, S., Bérézovsky, F., Pala, J. S. & Garland, M. T. (2000). Inorg. Chim. Acta, 308, 31–36.  Web of Science CSD CrossRef CAS Google Scholar
First citationWard, T. R., Duclos, S., Therrien, B. & Schenk, K. (1998). Organometallics, 17, 2490–2494.  Web of Science CSD CrossRef CAS Google Scholar
First citationWeberski, M. P. Jr & McLauchlan, C. C. (2007a). Inorg. Chem. Commun. 10, 906–909.  CrossRef CAS Google Scholar
First citationWeberski, M. P. & McLauchlan, C. C. (2007b). Acta Cryst. E63, m1171–m1172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, S., Li, G., Tian, S., Liao, F. & Lin, J. (2006). Eur. J. Inorg. Chem. 2850–2854.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1129-m1130
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds