organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o1870-o1871

N,N′-Bis(2-iodo­benzyl­­idene)ethane-1,2-di­amine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 26 August 2008; accepted 28 August 2008; online 6 September 2008)

The mol­ecule of the title Schiff base compound, C16H14I2N2, lies across a crystallographic inversion centre. An intra­molecular C—H⋯I hydrogen bond forms a five-membered ring, producing an S(5) ring motif. The C=N bond is coplanar with the benzene ring and adopts a trans configuration. Within the mol­ecule, the planar units are parallel, but extend in opposite directions from the dimethyl­ene bridge. An inter­esting feature of the crystal structure is the short I⋯N [3.2096 (15) Å] inter­action, which is significantly shorter than the sum of the van der Waals radii of these atoms. In the crystal structure, mol­ecules are linked into one-dimensional extended chains along the c axis and also into one-dimensional extended chains along the b axis through short inter­molecular I⋯N inter­actions, forming two-dimensional networks parallel to the bc plane.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the hydrogen bond capability of halogens, see: Brammer et al. (2001[Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277-290.]). For halogen–electronegative atom inter­actions, see: Lommerse et al. (1996[Lommerse, J. P. M., Stone, A. J., Taylor, R. & Allen, F. H. (1996). J. Am. Chem. Soc. 118, 3108-3116.]). For related structures, see, for example: Fun, Kia & Kargar (2008[Fun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1335.]); Fun, Kargar & Kia (2008[Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.]); Fun, Mirkhani et al. (2008[Fun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008). Acta Cryst. E64, o1471.]); Calligaris & Randaccio, (1987[Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715-738. London: Pergamon.]). For information on Schiff base ligands, their complexes and their applications, see, for example: Pal et al. (2005[Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880-3889.]); Hou et al. (2001[Hou, B., Friedman, N., Ruhman, S., Sheves, M. & Ottolenghi, M. (2001). J. Phys. Chem. B, 105, 7042-7048.]); Ren et al. (2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14I2N2

  • Mr = 488.09

  • Monoclinic, P 21 /c

  • a = 12.1820 (4) Å

  • b = 4.5978 (1) Å

  • c = 14.5664 (4) Å

  • β = 94.424 (2)°

  • V = 813.44 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.86 mm−1

  • T = 100.0 (1) K

  • 0.51 × 0.14 × 0.02 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.244, Tmax = 0.916

  • 24819 measured reflections

  • 4235 independent reflections

  • 3466 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.074

  • S = 1.16

  • 4235 reflections

  • 115 parameters

  • All H-atom parameters refined

  • Δρmax = 1.89 e Å−3

  • Δρmin = −1.74 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯I1 0.93 (3) 2.87 (3) 3.3880 (18) 116 (2)

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Schiff bases are one of most prevalent mixed-donor ligands in the field of coordination chemistry. Schiff bases have been used widely as ligands in the formation of transition metal complexes. Many such complexes have been structurally characterized, but only a relatively small number of free Schiff base ligands have been characterized (Calligaris & Randaccio, 1987). There has been growing interest in Schiff base ligands, mainly because of their wide application in the field of biochemistry, synthesis, and catalysis (Pal et al., 2005; Hou et al., 2001; Ren et al., 2002). As an extension of our work (Fun, Kia & Kargar 2008; Fun, Kargar & Kia 2008; Fun, Mirkhani et al. 2008) on the structural characterization of Schiff base compounds, the title compound (I), is reported here.

The molecule of the title compound, (I), (Fig. 1), lies across a crystallographic inversion centre. The bond lengths and angles are within normal ranges (Allen et al.,1987). An intramolecular C—H···I hydrogen bond (Brammer et al. 2001) forms a five-membered ring, producing an S(5) ring motif (Bernstein et al., 1995) (Table 1). The asymmetric unit of the compound is composed of one-half of the molecule. The CN bond is coplanar with the benzene ring and adopts a trans configuration. Within the molecule, the planar units are parallel, but extend in opposite directions from the methylene bridge. The interesting feature of the crystal structure is the short I···N [3.2096 (15) Å] interactions (Lommerse et al. 1996), which is significantly shorter than the sum of the van der Waals radii of the relevant atoms. In the crystal structure, molecules are linked into 1-D extended chains along the c axis and are also into 1-D extended chains along the b axis through short intermolecular I···N interactions forming 2-D networks (Fig. 2 & 3) which are parallel to the bc plane.

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the hydrogen bond capability of halogens, see: Brammer et al. (2001). For halogen–electronegative atom interactions, see: Lommerse et al. (1996). For related structures, see, for example: Fun, Kia & Kargar (2008); Fun, Kargar & Kia (2008); Fun, Mirkhani et al. (2008); Calligaris & Randaccio, (1987). For information on Schiff base lignads and their complexes and their applications, see, for example: Pal et al. (2005); Hou et al. (2001); Ren et al. (2002).

Experimental top

The synthetic method has been described earlier (Fun, Kia & Kargar et al., 2008). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement top

All of the H atoms were located from the difference Fourier map and freely refined. The highest peak is located 0.61 Å from C5 and the deepest hole is located 0.63 Å from I1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels and 50% probability ellipsoids for non-H atoms [symmetry code for A: -x, 1 - y, -z].
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the b axis, showing 1-D extended chains along the c axis. Intra- and intermolecular interactions are shown as dashed lines.
[Figure 3] Fig. 3. The crystal packing of (I), viewed down the c-axis showing 1-D extended chains along the b-axis. Intra and intermolecular interactions are shown as dashed lines.
N,N'-Bis(2-iodobenzylidene)ethane-1,2-diamine top
Crystal data top
C16H14I2N2F(000) = 460
Mr = 488.09Dx = 1.993 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7125 reflections
a = 12.1820 (4) Åθ = 2.8–38.9°
b = 4.5978 (1) ŵ = 3.86 mm1
c = 14.5664 (4) ÅT = 100 K
β = 94.424 (2)°Plate, colourless
V = 813.44 (4) Å30.51 × 0.14 × 0.02 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4235 independent reflections
Radiation source: fine-focus sealed tube3466 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 37.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1920
Tmin = 0.244, Tmax = 0.917k = 77
24819 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074All H-atom parameters refined
S = 1.16 w = 1/[σ2(Fo2) + (0.0295P)2 + 0.1458P]
where P = (Fo2 + 2Fc2)/3
4235 reflections(Δ/σ)max = 0.001
115 parametersΔρmax = 1.89 e Å3
0 restraintsΔρmin = 1.74 e Å3
Crystal data top
C16H14I2N2V = 813.44 (4) Å3
Mr = 488.09Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.1820 (4) ŵ = 3.86 mm1
b = 4.5978 (1) ÅT = 100 K
c = 14.5664 (4) Å0.51 × 0.14 × 0.02 mm
β = 94.424 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4235 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3466 reflections with I > 2σ(I)
Tmin = 0.244, Tmax = 0.917Rint = 0.044
24819 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.074All H-atom parameters refined
S = 1.16Δρmax = 1.89 e Å3
4235 reflectionsΔρmin = 1.74 e Å3
115 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.219874 (11)0.02241 (3)0.328844 (8)0.01748 (5)
N10.14038 (12)0.3597 (4)0.03053 (10)0.0158 (3)
C10.29294 (15)0.0875 (4)0.20654 (12)0.0146 (3)
C20.37697 (15)0.2923 (4)0.21484 (12)0.0167 (3)
C30.43327 (16)0.3648 (5)0.13879 (12)0.0178 (3)
C40.40419 (16)0.2345 (5)0.05442 (13)0.0185 (4)
C50.32010 (17)0.0341 (4)0.04599 (13)0.0160 (3)
H50.28130.00600.01620.019*
C60.26222 (16)0.0456 (4)0.12178 (13)0.0135 (3)
C70.17398 (15)0.2630 (4)0.10940 (12)0.0147 (3)
C80.05021 (16)0.5681 (4)0.02623 (13)0.0160 (3)
H8B0.0723 (18)0.725 (5)0.0044 (15)0.016 (6)*
H40.4465 (18)0.278 (5)0.0004 (15)0.017 (6)*
H8A0.0293 (19)0.629 (6)0.0866 (16)0.021 (6)*
H20.3998 (18)0.387 (6)0.2766 (16)0.015 (6)*
H70.144 (2)0.323 (7)0.1634 (18)0.034 (7)*
H30.488 (3)0.507 (5)0.148 (2)0.031 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02070 (7)0.01995 (7)0.01214 (6)0.00044 (4)0.00353 (4)0.00024 (4)
N10.0157 (7)0.0154 (8)0.0163 (6)0.0034 (6)0.0008 (5)0.0003 (5)
C10.0162 (8)0.0149 (8)0.0127 (7)0.0002 (6)0.0015 (6)0.0012 (6)
C20.0184 (8)0.0151 (8)0.0160 (7)0.0003 (7)0.0026 (6)0.0001 (6)
C30.0155 (8)0.0175 (9)0.0201 (8)0.0046 (7)0.0003 (6)0.0004 (7)
C40.0192 (8)0.0187 (9)0.0178 (8)0.0049 (7)0.0033 (6)0.0019 (6)
C50.0188 (8)0.0161 (8)0.0132 (7)0.0018 (6)0.0028 (6)0.0030 (6)
C60.0151 (8)0.0132 (8)0.0123 (7)0.0001 (6)0.0011 (6)0.0011 (6)
C70.0147 (7)0.0129 (8)0.0168 (7)0.0008 (6)0.0021 (6)0.0011 (6)
C80.0151 (8)0.0149 (8)0.0178 (8)0.0038 (6)0.0009 (6)0.0002 (6)
Geometric parameters (Å, º) top
I1—C12.1133 (17)C4—C51.376 (3)
N1—C71.270 (2)C4—H40.99 (2)
N1—C81.455 (2)C5—C61.404 (3)
C1—C21.389 (3)C5—H50.9975
C1—C61.403 (3)C6—C71.469 (3)
C2—C31.388 (3)C7—H70.93 (3)
C2—H21.02 (2)C8—C8i1.526 (4)
C3—C41.388 (3)C8—H8B0.90 (2)
C3—H30.94 (3)C8—H8A0.98 (2)
C7—N1—C8117.33 (16)C4—C5—H5117.7
C2—C1—C6121.13 (17)C6—C5—H5116.7
C2—C1—I1116.36 (13)C1—C6—C5117.54 (18)
C6—C1—I1122.46 (14)C1—C6—C7123.23 (17)
C3—C2—C1119.97 (17)C5—C6—C7119.23 (17)
C3—C2—H2118.9 (13)N1—C7—C6122.09 (17)
C1—C2—H2121.1 (13)N1—C7—H7122.8 (17)
C2—C3—C4119.67 (18)C6—C7—H7115.1 (17)
C2—C3—H3116 (2)N1—C8—C8i108.9 (2)
C4—C3—H3124 (2)N1—C8—H8B107.1 (14)
C5—C4—C3120.34 (18)C8i—C8—H8B109.9 (14)
C5—C4—H4119.5 (13)N1—C8—H8A113.6 (15)
C3—C4—H4120.1 (13)C8i—C8—H8A108.3 (14)
C4—C5—C6121.35 (18)H8B—C8—H8A109 (2)
C6—C1—C2—C31.1 (3)I1—C1—C6—C72.6 (3)
I1—C1—C2—C3176.50 (15)C4—C5—C6—C10.2 (3)
C1—C2—C3—C40.9 (3)C4—C5—C6—C7179.31 (18)
C2—C3—C4—C50.1 (3)C8—N1—C7—C6178.18 (17)
C3—C4—C5—C60.5 (3)C1—C6—C7—N1173.04 (19)
C2—C1—C6—C50.5 (3)C5—C6—C7—N17.4 (3)
I1—C1—C6—C5176.90 (13)C7—N1—C8—C8i114.6 (2)
C2—C1—C6—C7179.94 (17)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···I10.93 (3)2.87 (3)3.3880 (18)116 (2)

Experimental details

Crystal data
Chemical formulaC16H14I2N2
Mr488.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.1820 (4), 4.5978 (1), 14.5664 (4)
β (°) 94.424 (2)
V3)813.44 (4)
Z2
Radiation typeMo Kα
µ (mm1)3.86
Crystal size (mm)0.51 × 0.14 × 0.02
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.244, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
24819, 4235, 3466
Rint0.044
(sin θ/λ)max1)0.857
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.074, 1.16
No. of reflections4235
No. of parameters115
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)1.89, 1.74

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···I10.93 (3)2.87 (3)3.3880 (18)116 (2)
 

Footnotes

Additional correspondence author, e-mail: zsrkk@yahoo.com.

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277–290.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715–738. London: Pergamon.  Google Scholar
First citationFun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008). Acta Cryst. E64, o1471.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHou, B., Friedman, N., Ruhman, S., Sheves, M. & Ottolenghi, M. (2001). J. Phys. Chem. B, 105, 7042–7048.  Web of Science CrossRef CAS Google Scholar
First citationLommerse, J. P. M., Stone, A. J., Taylor, R. & Allen, F. H. (1996). J. Am. Chem. Soc. 118, 3108–3116.  CrossRef CAS Web of Science Google Scholar
First citationPal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880–3889.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o1870-o1871
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds