metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

fac-Bis(aceto­nitrile-κN)tri­carbonyl­(tri­fluoro­acetato-κO)rhenium(I)

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 16 September 2008; accepted 17 September 2008; online 24 September 2008)

In the title compound, [Re(CF3COO)(CH3CN)2(CO)3], the Re atom has a distorted octa­hedral configuration. The two acetonitrile mol­ecules and two of the three carbonyl groups occupy the equatorial plane of the complex, with the third carbonyl ligand and the trifluoroacetato ligand in the axial positions. The three carbonyl ligands are arranged in a fac configuration around the Re atom. The CF3 segment of the trifluoroacetato ligand shows rotational disorder and the refined site-occupancy factors of the disordered parts are ca 0.5/0.5. The crystal structure is stabilized by C—H⋯O and C—H⋯F hydrogen bonds.

Related literature

For values of standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see, for example: Chan et al. (1977[Chan, L. Y. Y., Isaacs, E. E. & Graham, W. A. G. (1977). Can. J. Chem. 55, 111-114.]); Laza­rova et al. (2004[Lazarova, N., James, S., Babich, S. & Zubieta, J. (2004). Inorg. Chem. Commun. 7, 1023-1026.]). For background on the applications, see, for example: Davies & Hartely (1981[Davies, J. A. & Hartely, F. R. (1981). Chem. Rev. 81, 79-95.]); Collin & Sauvage (1989[Collin, J. P. & Sauvage, J. P. (1989). Chem. Rev. 93, 245-268.]); Balzani et al. (1996[Balzani, V., Juris, A., Venturi, M., Campagna, S. & Serroni, S. (1996). Chem. Rev. 96, 759-833.]); Meyer (1989[Meyer, T. J. (1989). Acc. Chem. Res. 22, 163-170.]).

[Scheme 1]

Experimental

Crystal data
  • [Re(C2F3O2)(C2H3N)2(CO)3]

  • Mr = 465.36

  • Monoclinic, P 21 /c

  • a = 10.8243 (2) Å

  • b = 10.4745 (2) Å

  • c = 14.4772 (3) Å

  • β = 125.584 (1)°

  • V = 1334.90 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.16 mm−1

  • T = 100.1 (1) K

  • 0.32 × 0.23 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.098, Tmax = 0.175

  • 24096 measured reflections

  • 5819 independent reflections

  • 5087 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.078

  • S = 1.06

  • 5819 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 2.80 e Å−3

  • Δρmin = −1.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4B⋯O5i 0.98 2.42 3.113 (5) 127
C6—H6A⋯F1Aii 0.98 2.35 3.237 (8) 150
C6—H6B⋯O5iii 0.98 2.46 3.075 (5) 121
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{5\over 2}}]; (iii) -x+2, -y, -z+2.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The synthesis of solvent-coordinated complexes is a matter of considerable interest since they are useful sources for synthesis of new species resulting from the substitution of the coordinated solvent by a more basic ligand (Davies & Hartely, 1981). The lability of the solvent ligand easily gives rise to a highly reactive 16e- electrophilic fragment able to activate small molecules thus providing an important step in many chemical processes. On the other hand, Rhenium tricarbonyl complexes have been the subject of much attention, mainly because of their photophysical (Meyer 1989) and photochemical properties (Collin & Sauvage 1989) and in supramolecular chemistry (Balzani et al., 1996).

In the title compound (I) (Fig. 1), the Re atom adopts a distorted octahedral geometry. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to the related structures (Chan et al., 1977; Lazarova et al., 2004). The two acetonitriles and two carbonyl groups occupy the equatorial plane of the complex, with the third carbonyl ligands and the trifluoroacetate in the axial positions. The three carbonyl ligands at Re atom are arranged in a fac configuration. The cis-equatorial angle of N1–Re1–N2 is 81.88 (13) °. The deviation of the Re atom from the C1/C2/N1/N2 plane is -0.048 (1) Å.

The crystal structure is stabilized by C—H···O and C—H···F hydrogen bonds (Table 1, Fig. 2).

Related literature top

For values of standard bond lengths, see: Allen et al. (1987). For related structures, see, for example: Chan et al. (1977); Lazarova et al. (2004). For background on the applications, see, for example: Davies & Hartely (1981); Collin & Sauvage (1989, 1989); Balzani et al. (1996); Meyer (1989).

Experimental top

The synthetic method has been described earlier (Chan et al., 1977). Single crystals suitable for X-ray diffraction were obtained by evaporation of an acetonitrile solution at room temperature.

Refinement top

The hydrogen atoms of the methyl groups were first located from the difference Fourier map and then constrained to refine using a rotating-group model. The CF3 segment of the trifluoroacete ligand has rotational disorder and the refined site-occupancy factores of the disorder parts are 0.501 (2)/0.499 (2). The highest peak (2.80 eÅ-3) is located 0.61 Å from Re1 and the deepest hole (-1.27 eÅ-3) is located 1.01 Å from Re1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering scheme. The open bonds indicate the disordered parts.
[Figure 2] Fig. 2. The crystal packing of the major component of (I), viewed down the c-axis. Intermolecular interactions are shown as dashed lines.
fac-Bis(acetonitrile-κN)tricarbonyl(trifluoroacetato-κO)rhenium(I) top
Crystal data top
[Re(C2F3O2)(C2H3N)2(CO)3]F(000) = 864
Mr = 465.36Dx = 2.316 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9896 reflections
a = 10.8243 (2) Åθ = 2.6–40.1°
b = 10.4745 (2) ŵ = 9.16 mm1
c = 14.4772 (3) ÅT = 100 K
β = 125.584 (1)°Block, colourless
V = 1334.90 (4) Å30.32 × 0.23 × 0.19 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5819 independent reflections
Radiation source: fine-focus sealed tube5087 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 35.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1714
Tmin = 0.098, Tmax = 0.175k = 1016
24096 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0375P)2 + 1.8212P]
where P = (Fo2 + 2Fc2)/3
5819 reflections(Δ/σ)max = 0.002
211 parametersΔρmax = 2.80 e Å3
0 restraintsΔρmin = 1.27 e Å3
Crystal data top
[Re(C2F3O2)(C2H3N)2(CO)3]V = 1334.90 (4) Å3
Mr = 465.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.8243 (2) ŵ = 9.16 mm1
b = 10.4745 (2) ÅT = 100 K
c = 14.4772 (3) Å0.32 × 0.23 × 0.19 mm
β = 125.584 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5819 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5087 reflections with I > 2σ(I)
Tmin = 0.098, Tmax = 0.175Rint = 0.037
24096 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.06Δρmax = 2.80 e Å3
5819 reflectionsΔρmin = 1.27 e Å3
211 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Re10.681282 (13)0.021815 (12)0.800806 (9)0.02552 (4)
F1A0.9350 (14)0.2534 (7)1.1194 (5)0.073 (4)0.501 (19)
F2A0.7397 (8)0.3650 (13)1.0179 (9)0.075 (4)0.501 (19)
F3A0.938 (2)0.4097 (12)1.0310 (12)0.101 (6)0.501 (19)
F1B0.818 (2)0.2830 (10)1.0906 (11)0.096 (7)0.499 (19)
F2B0.7687 (18)0.4304 (11)0.9808 (9)0.104 (6)0.499 (19)
F3B0.9837 (11)0.358 (2)1.0782 (13)0.121 (8)0.499 (19)
O10.9541 (3)0.0126 (3)0.7902 (3)0.0368 (5)
O20.5020 (4)0.1538 (3)0.5934 (2)0.0477 (7)
O30.5809 (4)0.2505 (3)0.6407 (3)0.0461 (6)
O40.7533 (3)0.1237 (2)0.9276 (2)0.0308 (4)
O50.8149 (4)0.2725 (3)0.8489 (2)0.0425 (6)
N10.7910 (3)0.1433 (3)0.9467 (2)0.0307 (5)
N20.4997 (4)0.0360 (3)0.8190 (3)0.0338 (6)
C10.8537 (4)0.0010 (3)0.7956 (3)0.0284 (5)
C20.5700 (4)0.0891 (4)0.6720 (3)0.0353 (7)
C30.6165 (4)0.1638 (4)0.7004 (3)0.0339 (6)
C40.2941 (6)0.0491 (6)0.8572 (5)0.0620 (15)
H4A0.34360.06240.93860.093*
H4B0.22470.12010.81440.093*
H4C0.23680.03110.83360.093*
C50.4088 (5)0.0429 (4)0.8350 (3)0.0401 (8)
C60.8744 (5)0.3017 (4)1.1107 (3)0.0398 (7)
H6A0.91430.25421.18110.060*
H6B0.95310.35911.12110.060*
H6C0.78590.35171.09150.060*
C70.8301 (4)0.2132 (3)1.0199 (3)0.0327 (6)
C80.8016 (4)0.2303 (3)0.9217 (3)0.0322 (6)
C90.8499 (5)0.3206 (4)1.0215 (3)0.0405 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.02296 (6)0.02704 (7)0.02680 (6)0.00061 (4)0.01461 (5)0.00002 (4)
F1A0.093 (8)0.062 (4)0.035 (3)0.002 (4)0.020 (3)0.009 (2)
F2A0.045 (3)0.095 (8)0.076 (6)0.009 (4)0.030 (4)0.042 (6)
F3A0.165 (15)0.083 (7)0.109 (9)0.093 (9)0.110 (11)0.062 (6)
F1B0.173 (17)0.072 (6)0.102 (8)0.060 (9)0.113 (11)0.049 (6)
F2B0.127 (11)0.060 (6)0.068 (5)0.036 (6)0.025 (5)0.015 (4)
F3B0.037 (4)0.202 (19)0.112 (10)0.039 (7)0.037 (5)0.108 (12)
O10.0305 (13)0.0433 (14)0.0409 (13)0.0065 (10)0.0232 (11)0.0090 (10)
O20.0454 (16)0.0530 (17)0.0389 (13)0.0121 (14)0.0212 (12)0.0132 (12)
O30.0558 (18)0.0402 (14)0.0468 (14)0.0161 (13)0.0324 (14)0.0126 (12)
O40.0333 (12)0.0281 (10)0.0346 (10)0.0033 (9)0.0218 (10)0.0029 (8)
O50.0503 (16)0.0378 (13)0.0446 (13)0.0049 (12)0.0306 (13)0.0024 (11)
N10.0304 (13)0.0288 (12)0.0331 (12)0.0023 (10)0.0187 (11)0.0003 (10)
N20.0314 (14)0.0352 (14)0.0377 (13)0.0035 (11)0.0218 (12)0.0036 (11)
C10.0280 (14)0.0268 (12)0.0309 (13)0.0012 (11)0.0175 (12)0.0028 (10)
C20.0330 (16)0.0398 (18)0.0342 (14)0.0019 (13)0.0202 (13)0.0022 (13)
C30.0306 (15)0.0362 (16)0.0339 (14)0.0062 (13)0.0182 (13)0.0017 (12)
C40.050 (3)0.086 (4)0.073 (3)0.026 (3)0.049 (3)0.037 (3)
C50.0329 (17)0.051 (2)0.0396 (17)0.0085 (15)0.0229 (15)0.0123 (15)
C60.0372 (18)0.0422 (19)0.0367 (15)0.0006 (15)0.0196 (14)0.0103 (14)
C70.0289 (15)0.0321 (15)0.0351 (14)0.0015 (12)0.0175 (12)0.0000 (12)
C80.0299 (15)0.0305 (14)0.0344 (13)0.0002 (12)0.0178 (12)0.0008 (11)
C90.044 (2)0.0376 (17)0.0414 (17)0.0063 (15)0.0254 (16)0.0054 (14)
Geometric parameters (Å, º) top
Re1—C31.905 (4)O3—C31.155 (4)
Re1—C21.914 (4)O4—C81.257 (4)
Re1—C11.924 (3)O5—C81.227 (4)
Re1—N22.135 (3)N1—C71.147 (4)
Re1—N12.138 (3)N2—C51.136 (5)
Re1—O42.153 (2)C4—C51.454 (6)
F1A—C91.354 (8)C4—H4A0.9800
F2A—C91.253 (7)C4—H4B0.9800
F3A—C91.285 (9)C4—H4C0.9800
F1B—C91.296 (8)C6—C71.444 (5)
F2B—C91.356 (9)C6—H6A0.9800
F3B—C91.241 (10)C6—H6B0.9800
O1—C11.143 (4)C6—H6C0.9800
O2—C21.149 (4)C8—C91.541 (5)
C3—Re1—C289.26 (15)H6A—C6—H6B109.5
C3—Re1—C189.64 (14)C7—C6—H6C109.5
C2—Re1—C188.16 (15)H6A—C6—H6C109.5
C3—Re1—N294.75 (13)H6B—C6—H6C109.5
C2—Re1—N293.44 (14)N1—C7—C6178.2 (4)
C1—Re1—N2175.34 (12)O5—C8—O4129.8 (3)
C3—Re1—N192.03 (13)O5—C8—C9116.0 (3)
C2—Re1—N1175.23 (12)O4—C8—C9114.2 (3)
C1—Re1—N196.43 (13)F3B—C9—F2A128.8 (8)
N2—Re1—N181.88 (12)F3B—C9—F3A36.0 (9)
C3—Re1—O4173.21 (12)F2A—C9—F3A111.5 (9)
C2—Re1—O496.39 (13)F3B—C9—F1B108.5 (9)
C1—Re1—O494.28 (11)F2A—C9—F1B57.9 (7)
N2—Re1—O481.20 (10)F3A—C9—F1B130.9 (7)
N1—Re1—O482.04 (10)F3B—C9—F1A69.5 (10)
C8—O4—Re1122.0 (2)F2A—C9—F1A106.7 (7)
C7—N1—Re1170.6 (3)F3A—C9—F1A104.8 (8)
C5—N2—Re1176.2 (3)F1B—C9—F1A50.1 (7)
O1—C1—Re1178.5 (3)F3B—C9—F2B103.4 (10)
O2—C2—Re1178.7 (4)F2A—C9—F2B46.1 (7)
O3—C3—Re1178.3 (3)F3A—C9—F2B71.6 (10)
C5—C4—H4A109.5F1B—C9—F2B101.3 (9)
C5—C4—H4B109.5F1A—C9—F2B140.3 (6)
H4A—C4—H4B109.5F3B—C9—C8116.3 (6)
C5—C4—H4C109.5F2A—C9—C8113.1 (5)
H4A—C4—H4C109.5F3A—C9—C8111.8 (6)
H4B—C4—H4C109.5F1B—C9—C8116.1 (4)
N2—C5—C4178.6 (5)F1A—C9—C8108.4 (4)
C7—C6—H6A109.5F2B—C9—C8109.4 (5)
C7—C6—H6B109.5
C2—Re1—O4—C843.2 (3)O4—C8—C9—F2A72.6 (9)
C1—Re1—O4—C845.4 (3)O5—C8—C9—F3A19.7 (11)
N2—Re1—O4—C8135.7 (3)O4—C8—C9—F3A160.5 (10)
N1—Re1—O4—C8141.3 (3)O5—C8—C9—F1B171.4 (10)
Re1—O4—C8—O51.2 (5)O4—C8—C9—F1B8.3 (11)
Re1—O4—C8—C9179.1 (2)O5—C8—C9—F1A134.7 (7)
O5—C8—C9—F3B59.0 (13)O4—C8—C9—F1A45.5 (8)
O4—C8—C9—F3B121.3 (13)O5—C8—C9—F2B57.6 (11)
O5—C8—C9—F2A107.1 (9)O4—C8—C9—F2B122.1 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O5i0.982.423.113 (5)127
C6—H6A···F1Aii0.982.353.237 (8)150
C6—H6B···O5iii0.982.463.075 (5)121
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+2, y1/2, z+5/2; (iii) x+2, y, z+2.

Experimental details

Crystal data
Chemical formula[Re(C2F3O2)(C2H3N)2(CO)3]
Mr465.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.8243 (2), 10.4745 (2), 14.4772 (3)
β (°) 125.584 (1)
V3)1334.90 (4)
Z4
Radiation typeMo Kα
µ (mm1)9.16
Crystal size (mm)0.32 × 0.23 × 0.19
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.098, 0.175
No. of measured, independent and
observed [I > 2σ(I)] reflections
24096, 5819, 5087
Rint0.037
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.078, 1.06
No. of reflections5819
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.80, 1.27

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O5i0.982.423.113 (5)127.2
C6—H6A···F1Aii0.982.353.237 (8)150.0
C6—H6B···O5iii0.982.463.075 (5)120.5
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+2, y1/2, z+5/2; (iii) x+2, y, z+2.
 

Acknowledgements

H-KF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBalzani, V., Juris, A., Venturi, M., Campagna, S. & Serroni, S. (1996). Chem. Rev. 96, 759–833.  CrossRef PubMed CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, L. Y. Y., Isaacs, E. E. & Graham, W. A. G. (1977). Can. J. Chem. 55, 111–114.  CrossRef CAS Web of Science Google Scholar
First citationCollin, J. P. & Sauvage, J. P. (1989). Chem. Rev. 93, 245–268.  CAS Google Scholar
First citationDavies, J. A. & Hartely, F. R. (1981). Chem. Rev. 81, 79–95.  CrossRef CAS Web of Science Google Scholar
First citationLazarova, N., James, S., Babich, S. & Zubieta, J. (2004). Inorg. Chem. Commun. 7, 1023–1026.  Web of Science CSD CrossRef CAS Google Scholar
First citationMeyer, T. J. (1989). Acc. Chem. Res. 22, 163–170.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds