metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­iodidobis(1-methyl­imidazole-κN3)cadmium(II)

aCollege of Mechanical Engineering, Qingdao Technological University, Qingdao 266033, People's Republic of China
*Correspondence e-mail: zhaojuanqd@163.com

(Received 13 September 2008; accepted 19 September 2008; online 24 September 2008)

In the title compound, [CdI2(C4H6N2)2], each Cd atom is coordinated by two N atoms from two 1-methylimidazole and two iodido ligands. The Cd atom has a distorted tetrahedral coordination. Inter­molecular C—H⋯I hydrogen bonds link the monomeric units, generating a one-dimensional supra­molecular chain along the a axis.

Related literature

For a related structure, see: Chand et al. (2003[Chand, B. G., Ray, U. S., Mostafa, G. M., Lu, T., Falvello, L. R., Soler, T., Tomàs, M. & Sinha, C. (2003). Polyhedron, 22, 3161-3169.]).

[Scheme 1]

Experimental

Crystal data
  • [CdI2(C4H6N2)2]

  • Mr = 530.43

  • Orthorhombic, P b c a

  • a = 13.5570 (9) Å

  • b = 14.5615 (14) Å

  • c = 14.9585 (19) Å

  • V = 2953.0 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.64 mm−1

  • T = 298 K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.574, Tmax = 0.579

  • 2888 measured reflections

  • 2768 independent reflections

  • 1811 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.178

  • S = 0.98

  • 2768 reflections

  • 137 parameters

  • 40 restraints

  • H-atom parameters constrained

  • Δρmax = 1.18 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5B⋯I1i 0.96 3.03 3.9797 169
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

In the title compound (I) (Fig. 1), each Cd atom is tetrahedrally surrounded showing a CdN2Cl2 coordination sphere. Each Mim(Mim = N-methylimidazole) acts as a monodentate-N(imidazole) donor ligand. The two imidazole rings are planar and make a dihedral angle of 69.46 (3)°. The Cd—N(imidazole) distance [Cd—N2, 2.238 (9); Cd—N4, 2.201 (10)°] is comparable with reported data (Chand, et al., 2003). The Cd—I bond distances are 2.7248 (13)Å and 2.7358 (13)Å. The angles extended in tetrahedral CdN2I2 geometry are I1—Cd—I2 119.20 (5)°, N4—Cd—N2, 112.2 (4)° and suggest a small distortion. All other angles are within the limits of distorted Td-geometry. Intermolecular C—H···I hydrogen bonds link the monomeric units to produce a one-dimensional supramolecular chain along the a-axis.

In the corresponding copper compound [Cd(HaaiMe)2Cl2] (Chand, et al., 2003), the CdII has a distorted tetrahedron coordination environment.

Related literature top

For a related structure, see: Chand et al. (2003).

Experimental top

N-Methylimidazole (32.8 mg, 0.4 mmol) in MeOH (10 ml) was added in dropwise to a stirred methanolic solution (10 ml) of CdI2 (366.2 mg, 0.1 mmol) at room temperature (298 K). The colorless solution was left undisturbed for 2 weeks. Colorless crystals were obtained. These were then washed with water and finally, dried in vacuo.

Refinement top

H atoms were positioned geometrically (C—H = 0.93Å or 0.96 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2 or 1.5 times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The packing of (I), viewed down the b-axis.
Diiodidobis(1-methylimidazole-κN3)cadmium(II) top
Crystal data top
[CdI2(C4H6N2)2]F(000) = 1936
Mr = 530.43Dx = 2.386 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 13.5570 (9) Åθ = 10–14°
b = 14.5615 (14) ŵ = 5.64 mm1
c = 14.9585 (19) ÅT = 298 K
V = 2953.0 (5) Å3Block, colorless
Z = 80.10 × 0.10 × 0.10 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2768 independent reflections
Radiation source: fine-focus sealed tube1811 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Thin–slice ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 016
Tmin = 0.574, Tmax = 0.579k = 017
2888 measured reflectionsl = 018
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.178 w = 1/[σ2(Fo2) + (0.1P)2 + 1P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
2768 reflectionsΔρmax = 1.18 e Å3
137 parametersΔρmin = 0.85 e Å3
40 restraintsExtinction correction: SHELXTL (Sheldrick, 2001), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0017 (2)
Crystal data top
[CdI2(C4H6N2)2]V = 2953.0 (5) Å3
Mr = 530.43Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.5570 (9) ŵ = 5.64 mm1
b = 14.5615 (14) ÅT = 298 K
c = 14.9585 (19) Å0.10 × 0.10 × 0.10 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2768 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1811 reflections with I > 2σ(I)
Tmin = 0.574, Tmax = 0.579Rint = 0.013
2888 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06340 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 0.99Δρmax = 1.18 e Å3
2768 reflectionsΔρmin = 0.85 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd1.20251 (6)0.53829 (6)1.04405 (6)0.0520 (3)
I11.21055 (7)0.59157 (7)0.86882 (6)0.0621 (3)
C11.5970 (10)0.6525 (10)1.0696 (12)0.080 (5)
H1A1.57980.70041.02840.120*
H1B1.64750.61461.04390.120*
H1C1.62080.67921.12420.120*
N11.5119 (6)0.5977 (7)1.0881 (7)0.052 (3)
I21.13534 (7)0.36699 (7)1.08491 (8)0.0707 (4)
N21.3612 (7)0.5502 (7)1.0836 (7)0.052 (3)
C21.5085 (12)0.5226 (11)1.1438 (10)0.070 (4)
H2A1.56020.49541.17500.084*
N30.9637 (7)0.6773 (6)1.1774 (6)0.047 (2)
C31.4143 (12)0.4979 (10)1.1428 (10)0.072 (4)
H3A1.38770.45121.17780.087*
N41.1068 (8)0.6296 (7)1.1229 (7)0.052 (2)
C41.4208 (9)0.6106 (9)1.0530 (9)0.054 (3)
H4A1.40400.65661.01260.065*
C50.8536 (8)0.6817 (10)1.2037 (9)0.061 (4)
H5A0.82040.62801.18190.092*
H5B0.82420.73551.17790.092*
H5C0.84790.68441.26760.092*
C61.0338 (10)0.7448 (10)1.1951 (9)0.066 (3)
H6A1.02300.80051.22380.080*
C71.1210 (11)0.7135 (11)1.1622 (11)0.078 (4)
H7A1.18100.74431.16580.093*
C81.0131 (9)0.6115 (9)1.1374 (8)0.054 (3)
H8A0.98410.55631.12060.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.0379 (5)0.0590 (5)0.0591 (6)0.0005 (4)0.0060 (4)0.0008 (5)
I10.0644 (6)0.0656 (6)0.0564 (5)0.0062 (4)0.0039 (4)0.0073 (4)
C10.046 (8)0.069 (9)0.125 (14)0.023 (7)0.017 (8)0.024 (9)
N10.024 (5)0.064 (6)0.068 (7)0.011 (4)0.009 (5)0.022 (6)
I20.0632 (6)0.0605 (6)0.0883 (8)0.0060 (4)0.0029 (5)0.0166 (5)
N20.037 (5)0.052 (6)0.067 (7)0.003 (5)0.008 (5)0.009 (5)
C20.068 (10)0.081 (11)0.062 (9)0.013 (8)0.010 (8)0.012 (8)
N30.041 (4)0.050 (5)0.049 (5)0.002 (4)0.001 (4)0.001 (4)
C30.081 (11)0.064 (8)0.073 (10)0.027 (8)0.003 (8)0.016 (8)
N40.052 (5)0.056 (5)0.050 (5)0.000 (4)0.003 (4)0.002 (4)
C40.038 (6)0.065 (8)0.059 (8)0.022 (6)0.010 (6)0.006 (6)
C50.040 (7)0.076 (9)0.068 (9)0.014 (6)0.001 (6)0.009 (7)
C60.060 (6)0.056 (5)0.083 (8)0.001 (5)0.007 (6)0.013 (5)
C70.069 (6)0.071 (6)0.094 (8)0.022 (5)0.015 (6)0.009 (6)
C80.052 (5)0.055 (5)0.054 (6)0.002 (4)0.007 (5)0.010 (5)
Geometric parameters (Å, º) top
Cd—N42.201 (10)N3—C81.313 (14)
Cd—N22.238 (9)N3—C61.392 (16)
Cd—I22.7248 (13)N3—C51.544 (14)
Cd—I12.7358 (13)C3—H3A0.9300
C1—N11.429 (16)N4—C81.315 (16)
C1—H1A0.9600N4—C71.369 (18)
C1—H1B0.9600C4—H4A0.9300
C1—H1C0.9600C5—H5A0.9600
N1—C41.355 (16)C5—H5B0.9600
N1—C21.377 (19)C5—H5C0.9600
N2—C41.279 (15)C6—C71.360 (18)
N2—C31.372 (16)C6—H6A0.9300
C2—C31.33 (2)C7—H7A0.9300
C2—H2A0.9300C8—H8A0.9300
N4—Cd—N2112.2 (4)C2—C3—N2111.2 (14)
N4—Cd—I2103.7 (3)C2—C3—H3A124.4
N2—Cd—I2109.4 (3)N2—C3—H3A124.4
N4—Cd—I1111.4 (3)C8—N4—C7104.1 (11)
N2—Cd—I1101.1 (3)C8—N4—Cd122.5 (9)
I2—Cd—I1119.20 (5)C7—N4—Cd133.3 (9)
N1—C1—H1A109.5N2—C4—N1110.0 (12)
N1—C1—H1B109.5N2—C4—H4A125.0
H1A—C1—H1B109.5N1—C4—H4A125.0
N1—C1—H1C109.5N3—C5—H5A109.5
H1A—C1—H1C109.5N3—C5—H5B109.5
H1B—C1—H1C109.5H5A—C5—H5B109.5
C4—N1—C2108.3 (10)N3—C5—H5C109.5
C4—N1—C1125.7 (12)H5A—C5—H5C109.5
C2—N1—C1126.0 (12)H5B—C5—H5C109.5
C4—N2—C3106.3 (12)C7—C6—N3106.8 (12)
C4—N2—Cd124.4 (9)C7—C6—H6A126.6
C3—N2—Cd129.2 (10)N3—C6—H6A126.6
C3—C2—N1103.9 (13)C6—C7—N4109.3 (12)
C3—C2—H2A128.0C6—C7—H7A125.3
N1—C2—H2A128.0N4—C7—H7A125.3
C8—N3—C6104.7 (10)N3—C8—N4114.9 (12)
C8—N3—C5129.7 (10)N3—C8—H8A122.5
C6—N3—C5125.6 (10)N4—C8—H8A122.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···I1i0.963.033.9797169
Symmetry code: (i) x1/2, y+3/2, z+2.

Experimental details

Crystal data
Chemical formula[CdI2(C4H6N2)2]
Mr530.43
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)13.5570 (9), 14.5615 (14), 14.9585 (19)
V3)2953.0 (5)
Z8
Radiation typeMo Kα
µ (mm1)5.64
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.574, 0.579
No. of measured, independent and
observed [I > 2σ(I)] reflections
2888, 2768, 1811
Rint0.013
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.178, 0.99
No. of reflections2768
No. of parameters137
No. of restraints40
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.18, 0.85

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···I1i0.963.033.9797169
Symmetry code: (i) x1/2, y+3/2, z+2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 20601015) and the Natural Science Foundation of Shandong Province (Y2006B12).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChand, B. G., Ray, U. S., Mostafa, G. M., Lu, T., Falvello, L. R., Soler, T., Tomàs, M. & Sinha, C. (2003). Polyhedron, 22, 3161–3169.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds