organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2,3,4-Tetra­methyl­cyclo­pent-2-ene-1,4-diol

aChemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany
*Correspondence e-mail: frank.edelmann@ovgu.de

(Received 9 July 2008; accepted 29 August 2008; online 6 September 2008)

The title compound, C9H16O2, crystallizes with two mol­ecules in the asymmetric unit. The structure displays inter­molecular O—H⋯O hydrogen bonding.

Related literature

For related literature, see: Etter (1991[Etter, M. C. (1991). J. Phys. Chem. 95, 4601-4610.]); Brock & Duncan (1994[Brock, C. P. & Duncan, L. L. (1994). Chem. Mater. 6, 1307-1312.]); Fendrick et al. (1988[Fendrick, C. M., Schertz, L. D., Day, V. W. & Marks, T. J. (1988). Organometallics, 7, 1828-1838.]).

[Scheme 1]

Experimental

Crystal data
  • C9H16O2

  • Mr = 156.22

  • Monoclinic, P 21 /c

  • a = 13.006 (3) Å

  • b = 10.5279 (16) Å

  • c = 13.892 (2) Å

  • β = 107.257 (10)°

  • V = 1816.6 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 133 (2) K

  • 0.45 × 0.28 × 0.07 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 20936 measured reflections

  • 5532 independent reflections

  • 3876 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.142

  • S = 1.03

  • 5532 reflections

  • 223 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H01⋯O2i 0.95 (2) 1.80 (2) 2.7438 (13) 174.7 (17)
O1′—H01′⋯O1 0.921 (18) 1.824 (18) 2.7345 (13) 169.3 (16)
O2—H02⋯O2′ii 0.841 (19) 1.89 (2) 2.7263 (13) 173.0 (18)
O2′—H02′⋯O1′ii 0.86 (2) 1.89 (2) 2.7333 (13) 166.1 (18)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP5 in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the solid state, alcohols generally form hydrogen-bonded networks resulting in a variety of ring, chain, or helix structures (Brock & Duncan, 1994). The hitherto unknown title compound, 1,2,3,4-tetramethylcyclopen-2-ene-1,4-diol, was obtained in minor quantities (less than 5% isolated yield) in the form of colorless crystals during a preparation of 1,2,3,4-tetramethylcyclopentadiene according to the literature (Fendrick et al., 1988). The structure of the title compound is shown in Figure 1. Dimensions are available in the archived CIF. Especially notable is the hydrogen-bond network in the crystal structure. As depicted in Figure 2, four molecules of 1,2,3,4-tetramethylcyclopen-2-ene-1,4-diol are connected via hydrogen-bonds to give cyclic tetramers. Further hydrogen-bonding between adjacent tetrameric units results in an extended hydrogen-bond network.

Related literature top

For related literature, see: Etter (1991); Brock & Duncan (1994); Fendrick et al. (1988).

Experimental top

Crystals of the title compound were obtained as a minor by-product during the synthesis of 1,2,3,4-tetramethylcyclopentadiene according to the literature preparatio (Fendrick et al., 1988).

Refinement top

H atoms bonded to C were refined with fixed individual displacement parameters [U(H) = 1.2 Ueq(C) or U(H) = 1.5 Ueq(Cmethyl)] using a riding model with C-H(methylen) = 0.99 Å or C-H(methyl) = 0.98Å, respectively. The H atoms bonded to O were refined isotropically.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP5 in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule of the title compound in the crystal. Displacement ellipsoids represent 50% probability levels. H-Atom radii are arbitrary.
[Figure 2] Fig. 2. The hydrogen-bond network.
1,2,3,4-Tetramethylcyclopent-2-ene-1,4-diol top
Crystal data top
C9H16O2F(000) = 688
Mr = 156.22Dx = 1.142 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 5784 reflections
a = 13.006 (3) Åθ = 2.5–30.0°
b = 10.5279 (16) ŵ = 0.08 mm1
c = 13.892 (2) ÅT = 133 K
β = 107.257 (10)°Plate, colourless
V = 1816.6 (6) Å30.45 × 0.28 × 0.07 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
3876 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 30.5°, θmin = 1.6°
Detector resolution: 8.192 pixels mm-1h = 1818
ω–scansk = 1415
20936 measured reflectionsl = 1919
5532 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0812P)2]
where P = (Fo2 + 2Fc2)/3
5532 reflections(Δ/σ)max = 0.002
223 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C9H16O2V = 1816.6 (6) Å3
Mr = 156.22Z = 8
Monoclinic, P21/cMo Kα radiation
a = 13.006 (3) ŵ = 0.08 mm1
b = 10.5279 (16) ÅT = 133 K
c = 13.892 (2) Å0.45 × 0.28 × 0.07 mm
β = 107.257 (10)°
Data collection top
Bruker SMART CCD
diffractometer
3876 reflections with I > 2σ(I)
20936 measured reflectionsRint = 0.048
5532 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.41 e Å3
5532 reflectionsΔρmin = 0.23 e Å3
223 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.16035 (7)0.34338 (9)0.59028 (7)0.0255 (2)
O20.16763 (8)0.21564 (10)0.28457 (7)0.0330 (3)
H020.2279 (16)0.2415 (16)0.3207 (14)0.048 (5)*
H010.1585 (14)0.3212 (17)0.6560 (15)0.055 (5)*
C10.08579 (10)0.28972 (13)0.41367 (9)0.0260 (3)
H1A0.01000.31720.38520.031*
H1B0.13350.36230.41150.031*
C20.10655 (9)0.24265 (12)0.52290 (8)0.0210 (2)
C30.17851 (9)0.12814 (12)0.52756 (9)0.0217 (2)
C40.17849 (10)0.09054 (12)0.43564 (10)0.0242 (3)
C50.11007 (10)0.17648 (13)0.35382 (9)0.0260 (3)
C60.00335 (10)0.20778 (14)0.54767 (10)0.0290 (3)
H6C0.02160.17240.61590.035*
H6B0.03680.14460.49920.035*
H6A0.04100.28400.54380.035*
C70.23648 (11)0.06809 (14)0.62666 (10)0.0312 (3)
H7C0.27030.01120.61480.037*
H7B0.18510.04990.66410.037*
H7A0.29200.12630.66590.037*
C80.23380 (13)0.02192 (15)0.40823 (12)0.0397 (4)
H8C0.27790.06350.46980.048*
H8B0.28000.00580.36780.048*
H8A0.17990.08190.36910.048*
C90.00891 (12)0.11076 (17)0.28879 (11)0.0403 (4)
H9C0.03330.17070.23850.048*
H9B0.03430.08140.33150.048*
H9A0.02930.03790.25450.048*
O1'0.34071 (7)0.44079 (8)0.55499 (7)0.0229 (2)
H01'0.2803 (14)0.4165 (17)0.5720 (13)0.042 (5)*
O2'0.63799 (7)0.68485 (9)0.61022 (7)0.0229 (2)
H02'0.6360 (15)0.6373 (17)0.5589 (15)0.053 (5)*
C1'0.48169 (9)0.58556 (11)0.64713 (8)0.0188 (2)
H1'10.52350.50890.64130.023*
H1'20.48430.59630.71860.023*
C2'0.36462 (9)0.57287 (11)0.58020 (9)0.0183 (2)
C3'0.36529 (9)0.64743 (11)0.48658 (9)0.0195 (2)
C4'0.45363 (9)0.71901 (11)0.50268 (8)0.0190 (2)
C5'0.52810 (9)0.70382 (11)0.60928 (8)0.0182 (2)
C6'0.28221 (10)0.62512 (13)0.62934 (10)0.0258 (3)
H6'C0.20960.61660.58230.031*
H6'B0.29740.71490.64610.031*
H6'A0.28690.57720.69100.031*
C7'0.27255 (10)0.63672 (14)0.39236 (10)0.0279 (3)
H7'C0.28240.69680.34200.033*
H7'B0.20540.65630.40760.033*
H7'A0.26910.55010.36580.033*
C8'0.48398 (11)0.80742 (12)0.43083 (10)0.0269 (3)
H8'C0.42540.81080.36740.032*
H8'B0.54970.77660.41780.032*
H8'A0.49660.89260.46040.032*
C9'0.52987 (11)0.82140 (12)0.67418 (10)0.0251 (3)
H9'C0.58050.80790.74140.030*
H9'B0.45760.83640.68010.030*
H9'A0.55260.89530.64270.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0289 (5)0.0282 (5)0.0219 (4)0.0072 (4)0.0112 (4)0.0031 (4)
O20.0267 (5)0.0570 (7)0.0158 (4)0.0163 (5)0.0073 (4)0.0031 (4)
C10.0231 (6)0.0341 (7)0.0202 (6)0.0010 (5)0.0056 (5)0.0049 (5)
C20.0199 (6)0.0263 (6)0.0171 (5)0.0033 (5)0.0058 (4)0.0005 (4)
C30.0188 (6)0.0260 (6)0.0205 (6)0.0037 (5)0.0061 (5)0.0017 (5)
C40.0226 (6)0.0274 (6)0.0243 (6)0.0055 (5)0.0095 (5)0.0036 (5)
C50.0208 (6)0.0402 (7)0.0173 (6)0.0091 (5)0.0061 (5)0.0010 (5)
C60.0216 (6)0.0397 (8)0.0278 (7)0.0046 (5)0.0106 (5)0.0011 (5)
C70.0316 (7)0.0343 (7)0.0265 (7)0.0029 (6)0.0067 (6)0.0063 (6)
C80.0442 (9)0.0363 (8)0.0449 (9)0.0000 (7)0.0229 (7)0.0084 (7)
C90.0297 (7)0.0629 (11)0.0264 (7)0.0213 (7)0.0055 (6)0.0049 (7)
O1'0.0221 (4)0.0214 (4)0.0278 (5)0.0045 (3)0.0114 (4)0.0053 (3)
O2'0.0167 (4)0.0300 (5)0.0219 (4)0.0034 (3)0.0057 (3)0.0059 (4)
C1'0.0199 (5)0.0204 (5)0.0160 (5)0.0008 (4)0.0053 (4)0.0006 (4)
C2'0.0185 (5)0.0182 (5)0.0193 (5)0.0014 (4)0.0074 (4)0.0025 (4)
C3'0.0204 (5)0.0211 (6)0.0166 (5)0.0036 (4)0.0049 (4)0.0002 (4)
C4'0.0227 (6)0.0192 (5)0.0161 (5)0.0025 (4)0.0071 (4)0.0009 (4)
C5'0.0171 (5)0.0206 (6)0.0175 (5)0.0010 (4)0.0062 (4)0.0009 (4)
C6'0.0249 (6)0.0274 (6)0.0288 (6)0.0009 (5)0.0138 (5)0.0038 (5)
C7'0.0250 (6)0.0323 (7)0.0215 (6)0.0025 (5)0.0006 (5)0.0001 (5)
C8'0.0320 (7)0.0270 (6)0.0241 (6)0.0014 (5)0.0119 (5)0.0067 (5)
C9'0.0301 (6)0.0237 (6)0.0230 (6)0.0028 (5)0.0101 (5)0.0054 (5)
Geometric parameters (Å, º) top
O1—C21.4498 (14)O1'—C2'1.4451 (14)
O1—H010.95 (2)O1'—H01'0.921 (18)
O2—C51.4434 (15)O2'—C5'1.4394 (14)
O2—H020.841 (19)O2'—H02'0.86 (2)
C1—C51.5388 (19)C1'—C2'1.5365 (16)
C1—C21.5421 (17)C1'—C5'1.5425 (16)
C1—H1A0.9900C1'—H1'10.9900
C1—H1B0.9900C1'—H1'20.9900
C2—C31.5157 (18)C2'—C3'1.5214 (16)
C2—C61.5259 (17)C2'—C6'1.5334 (17)
C3—C41.3369 (17)C3'—C4'1.3362 (17)
C3—C71.4992 (17)C3'—C7'1.4981 (17)
C4—C81.492 (2)C4'—C8'1.5007 (17)
C4—C51.5174 (19)C4'—C5'1.5184 (16)
C5—C91.5233 (18)C5'—C9'1.5275 (16)
C6—H6C0.9800C6'—H6'C0.9800
C6—H6B0.9800C6'—H6'B0.9800
C6—H6A0.9800C6'—H6'A0.9800
C7—H7C0.9800C7'—H7'C0.9800
C7—H7B0.9800C7'—H7'B0.9800
C7—H7A0.9800C7'—H7'A0.9800
C8—H8C0.9800C8'—H8'C0.9800
C8—H8B0.9800C8'—H8'B0.9800
C8—H8A0.9800C8'—H8'A0.9800
C9—H9C0.9800C9'—H9'C0.9800
C9—H9B0.9800C9'—H9'B0.9800
C9—H9A0.9800C9'—H9'A0.9800
C2—O1—H01107.2 (11)C2'—O1'—H01'110.1 (11)
C5—O2—H02105.7 (13)C5'—O2'—H02'106.6 (13)
C5—C1—C2106.18 (10)C2'—C1'—C5'106.36 (9)
C5—C1—H1A110.5C2'—C1'—H1'1110.5
C2—C1—H1A110.5C5'—C1'—H1'1110.5
C5—C1—H1B110.5C2'—C1'—H1'2110.5
C2—C1—H1B110.5C5'—C1'—H1'2110.5
H1A—C1—H1B108.7H1'1—C1'—H1'2108.6
O1—C2—C3112.37 (10)O1'—C2'—C3'110.16 (9)
O1—C2—C6108.58 (10)O1'—C2'—C6'108.94 (10)
C3—C2—C6111.86 (10)C3'—C2'—C6'112.18 (10)
O1—C2—C1108.08 (10)O1'—C2'—C1'109.49 (9)
C3—C2—C1102.90 (10)C3'—C2'—C1'102.50 (9)
C6—C2—C1112.97 (10)C6'—C2'—C1'113.42 (10)
C4—C3—C7127.58 (12)C4'—C3'—C7'128.18 (11)
C4—C3—C2111.69 (11)C4'—C3'—C2'111.76 (10)
C7—C3—C2120.70 (11)C7'—C3'—C2'120.05 (11)
C3—C4—C8127.96 (13)C3'—C4'—C8'128.40 (11)
C3—C4—C5111.89 (11)C3'—C4'—C5'111.83 (10)
C8—C4—C5120.13 (12)C8'—C4'—C5'119.76 (10)
O2—C5—C4111.39 (11)O2'—C5'—C4'111.58 (9)
O2—C5—C9105.18 (10)O2'—C5'—C9'105.43 (9)
C4—C5—C9112.63 (12)C4'—C5'—C9'112.58 (10)
O2—C5—C1111.66 (11)O2'—C5'—C1'111.89 (9)
C4—C5—C1103.06 (10)C4'—C5'—C1'102.51 (9)
C9—C5—C1113.13 (12)C9'—C5'—C1'113.06 (10)
C2—C6—H6C109.5C2'—C6'—H6'C109.5
C2—C6—H6B109.5C2'—C6'—H6'B109.5
H6C—C6—H6B109.5H6'C—C6'—H6'B109.5
C2—C6—H6A109.5C2'—C6'—H6'A109.5
H6C—C6—H6A109.5H6'C—C6'—H6'A109.5
H6B—C6—H6A109.5H6'B—C6'—H6'A109.5
C3—C7—H7C109.5C3'—C7'—H7'C109.5
C3—C7—H7B109.5C3'—C7'—H7'B109.5
H7C—C7—H7B109.5H7'C—C7'—H7'B109.5
C3—C7—H7A109.5C3'—C7'—H7'A109.5
H7C—C7—H7A109.5H7'C—C7'—H7'A109.5
H7B—C7—H7A109.5H7'B—C7'—H7'A109.5
C4—C8—H8C109.5C4'—C8'—H8'C109.5
C4—C8—H8B109.5C4'—C8'—H8'B109.5
H8C—C8—H8B109.5H8'C—C8'—H8'B109.5
C4—C8—H8A109.5C4'—C8'—H8'A109.5
H8C—C8—H8A109.5H8'C—C8'—H8'A109.5
H8B—C8—H8A109.5H8'B—C8'—H8'A109.5
C5—C9—H9C109.5C5'—C9'—H9'C109.5
C5—C9—H9B109.5C5'—C9'—H9'B109.5
H9C—C9—H9B109.5H9'C—C9'—H9'B109.5
C5—C9—H9A109.5C5'—C9'—H9'A109.5
H9C—C9—H9A109.5H9'C—C9'—H9'A109.5
H9B—C9—H9A109.5H9'B—C9'—H9'A109.5
C5—C1—C2—O1139.28 (10)C5'—C1'—C2'—O1'138.54 (9)
C5—C1—C2—C320.24 (12)C5'—C1'—C2'—C3'21.61 (11)
C5—C1—C2—C6100.55 (12)C5'—C1'—C2'—C6'99.55 (11)
O1—C2—C3—C4130.31 (11)O1'—C2'—C3'—C4'130.65 (11)
C6—C2—C3—C4107.25 (12)C6'—C2'—C3'—C4'107.81 (12)
C1—C2—C3—C414.31 (13)C1'—C2'—C3'—C4'14.19 (13)
O1—C2—C3—C751.62 (15)O1'—C2'—C3'—C7'50.55 (14)
C6—C2—C3—C770.82 (14)C6'—C2'—C3'—C7'70.99 (14)
C1—C2—C3—C7167.63 (11)C1'—C2'—C3'—C7'167.00 (10)
C7—C3—C4—C81.6 (2)C7'—C3'—C4'—C8'0.3 (2)
C2—C3—C4—C8176.35 (12)C2'—C3'—C4'—C8'178.94 (11)
C7—C3—C4—C5179.83 (12)C7'—C3'—C4'—C5'179.35 (11)
C2—C3—C4—C52.27 (15)C2'—C3'—C4'—C5'0.67 (14)
C3—C4—C5—O2130.67 (12)C3'—C4'—C5'—O2'133.00 (10)
C8—C4—C5—O250.59 (16)C8'—C4'—C5'—O2'47.36 (14)
C3—C4—C5—C9111.43 (13)C3'—C4'—C5'—C9'108.69 (12)
C8—C4—C5—C967.31 (16)C8'—C4'—C5'—C9'70.96 (14)
C3—C4—C5—C110.82 (14)C3'—C4'—C5'—C1'13.10 (13)
C8—C4—C5—C1170.44 (12)C8'—C4'—C5'—C1'167.25 (10)
C2—C1—C5—O2138.72 (10)C2'—C1'—C5'—O2'140.96 (9)
C2—C1—C5—C419.06 (12)C2'—C1'—C5'—C4'21.28 (11)
C2—C1—C5—C9102.85 (12)C2'—C1'—C5'—C9'100.18 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H01···O2i0.95 (2)1.80 (2)2.7438 (13)174.7 (17)
O1—H01···O10.921 (18)1.824 (18)2.7345 (13)169.3 (16)
O2—H02···O2ii0.841 (19)1.89 (2)2.7263 (13)173.0 (18)
O2—H02···O1ii0.86 (2)1.89 (2)2.7333 (13)166.1 (18)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H16O2
Mr156.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)133
a, b, c (Å)13.006 (3), 10.5279 (16), 13.892 (2)
β (°) 107.257 (10)
V3)1816.6 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.45 × 0.28 × 0.07
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20936, 5532, 3876
Rint0.048
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.142, 1.03
No. of reflections5532
No. of parameters223
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.23

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP5 in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H01···O2i0.95 (2)1.80 (2)2.7438 (13)174.7 (17)
O1'—H01'···O10.921 (18)1.824 (18)2.7345 (13)169.3 (16)
O2—H02···O2'ii0.841 (19)1.89 (2)2.7263 (13)173.0 (18)
O2'—H02'···O1'ii0.86 (2)1.89 (2)2.7333 (13)166.1 (18)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

Financial support by the Otto-von-Guericke-Universität Magdeburg is gratefully acknowledged.

References

First citationBrock, C. P. & Duncan, L. L. (1994). Chem. Mater. 6, 1307–1312.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C. (1991). J. Phys. Chem. 95, 4601–4610.  CrossRef CAS Web of Science Google Scholar
First citationFendrick, C. M., Schertz, L. D., Day, V. W. & Marks, T. J. (1988). Organometallics, 7, 1828–1838.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds