metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(1H-benzimidazol-2-yl)phenolato-κ2N3,O]cobalt(II) di­methyl­formamide disolvate

aDepartment of Chemistry, Shannxi Institute of Education, Xi'an, Shaanxi 710061, People's Republic of China, and bDepartment of Chemistry, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
*Correspondence e-mail: junli@nwu.edu.cn

(Received 14 May 2008; accepted 16 September 2008; online 21 September 2008)

In the crystal structure of the title compound, [Co(C13H9N2O)2]·2C3H7NO, the CoII ion is four-coordinated by two N atoms and two O atoms from two deprotonated 2-(1H-benzimidazol-2-yl)phenol ligands in a distorted tetra­hedral geometry. The dimethyl­formamide solvent mol­ecules are found inside a two-dimensional network structure formed by inter­molecular N—H⋯O hydrogen bonds linking the mol­ecules.

Related literature

For related literature, see: Benzekri et al. (1991[Benzekri, A., Dubourdeaux, P., Latour, J. M., Rey, P. & Laugier, J. (1991). J. Chem. Soc. Dalton Trans. pp. 3359-3365.]); Crane et al. (1995[Crane, J. D., Hughes, R. & Sinn, E. (1995). Inorg. Chim. Acta, 237, 181-185.]); Lorosch & Haase (1985[Lorosch, J. & Haase, W. (1985). Inorg. Chim. Acta, 108, 35-39.]); Maekawa et al. (1989[Maekawa, M., Kitagawa, S., Munakata, M. & Masuda, H. (1989). Inorg. Chem. 28, 1904-1909.]); McKee et al. (1981[McKee, V., Dagdigian, J. V., Bau, R. & Reed, C. A. (1981). J. Am. Chem. Soc. 103, 7000-7001.]); Sundburg & Martin (1974[Sundburg, R. J. & Martin, R. B. (1974). Chem. Rev. 74, 471-517.]); Nalwa et al. (2003[Nalwa, H. S., Rohwer, L. S. & Heeger, A. J. (2003). Editors. Handbook of Luminescence, Display Materials, and Devices. Stevenson Ranch, CA: American Scientific Publishers.]) and references cited therein; Tong et al. (2005[Tong, Y.-P., Zheng, S.-L. & Chen, X.-M. (2005). Inorg. Chem. 44, 4270-4275.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C13H9N2O)2]·2C3H7NO

  • Mr = 623.57

  • Orthorhombic, P b c n

  • a = 15.440 (2) Å

  • b = 8.7022 (12) Å

  • c = 22.156 (3) Å

  • V = 2977.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.62 mm−1

  • T = 298 (2) K

  • 0.34 × 0.28 × 0.09 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.816, Tmax = 0.946

  • 12837 measured reflections

  • 3157 independent reflections

  • 2167 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.107

  • S = 1.03

  • 3157 reflections

  • 197 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2 0.86 1.94 2.772 (2) 164

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Complexes with imidazole-related and imidazole-containing ligands serve as models for metalloproteins and have been extensively studied in recent years (Sundburg et al., 1974; Maekawa et al., 1989; Lorosch & Haase, 1985; Benzekri et al., 1991; Crane et al., 1995; McKee et al., 1981). It has been shown in the previous reports, that the benzimidazole-based derivatives are a novel class of N,O-donor ligands that could form sublimable luminescent complexes as possible electroluminescent materials (Nalwa et al., 2003; Tong et al., 2005). The bidentate ligand 2-(2'-hydroxyphenyl)benzimidazole(hpbm) is an N,O bidentate ligand that comprises two donor groups of relevance to the coordination of metal centers in biological systems, namely phenolate (tyrosine) and imidazole (histidine). In present paper, we report the synthesis and crystal structure of the dimethylformamide solvate of the CoII complex with two deprotonated ligands, [Co(pbm)2].2(DMF).

The structure of the complex is shown in Fig. 1. The molecules of the cobalt complex are disposed about a twofold symmetry axis. The Co—O and Co—N bond lengths are 1.9135 (2) Å, and 1.9784 (2)Å respectively (Table 1). The cobalt atoms adopt a distorted four-coordinate environment with a dihedral angle of 75.4 (3)° between the two coordinating ligands (as defined by the Co—N—O planes). The O—Co—O and N—Co—N bond angles are 131.26 (2)° and 123.60 (2)°. In the title complex, the stronger hydrogen bonds are formed through oxygen atom of DMF with uncoordinated nitrogen atom of the ligand. The weaker hydrogen bonds are formed through uncoordinated oxygen atom of the ligand with carbon atom of another ligand.Through above the interaction, a novel two-dimensional network structure was formed where we happened to find the solvent molecules inside.

Related literature top

For related literature, see: Benzekri et al. (1991); Crane et al. (1995); Lorosch & Haase (1985); Maekawa et al. (1989); McKee et al. (1981); Sundburg & Martin (1974); Nalwa et al. (2003) and references cited therein; Tong et al. (2005).

Experimental top

The ligand, 2-(2'-hydroxyphenyl)benzimidazole, was synthesized as follows: A solution of 2.32 g (19 mmol) of salicylaldehyde in 15 ml of EtOH was added to a solution of 2.05 g (19 mmol) of o-phenylenediamine in 25 ml of EtOH with stirring and heating. The resulting orange solution was refluxed for hour and then cooled to room temperature. After standing in the refridgerator for 12 h, the orange solution was filtered and 15 ml of ether was added to the solution. Standing in the open air for 2 d yielded orange crystalline needles which were filtered and air-dried. Yield: 60%. The elemental analysis results are completely in agreement with the structural composition of the ligand. m.p. 524–525 K.

The title complex was obtained as follows: To a filtered solution of HL(0.420 g, 2 mmol) and KOH (0.112 g, 2 mmol) in methanol(60 ml) at rt was added a filtered solution of Co(OAc)2.H2O (0.250 g, 1 mmol) in methanol(29 ml) with stirring. The product began to crystallize from the solution tardily. After 1 h the pink solid was filtered off, washed with methanol, and air-dried. X-ray quality single crystals were grown by the vapour diffusion of ether into a DMF solution of the solid above to yield pink crystals of the title complex. Analysis. Calcd for C32H32N6O4Co (%): C 61.64, H 5.14, N 13.48. Found (%): C 62.06, H 4.95, N 13.86.

Refinement top

The H atoms on C atom were treated as riding with C—H = 0.96Å and Uiso(H) = 1.5Ue.g of the parent atom. The H atoms on N atom were refined with Uiso(H) = 1.2Ue.g of the parent atom and N—H = 0.86 Å. The final electron density maximum and minimum were +0.31 and -0.46 e Å-3 respectively.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level for non-hydrogen atoms. H atoms are shown as small spheres of arbitrary radii. [symmetry code: (i) -x + 1, y, -z + 1/2]
[Figure 2] Fig. 2. Two-dimensional network structure with the solvent molecules encapsulated.
Bis[2-(1H-benzimidazol-2-yl)phenolato- κ2N3,O]cobalt(II) dimethylformamide disolvate top
Crystal data top
[Co(C13H9N2O)2]·2C3H7NODx = 1.391 Mg m3
Mr = 623.57Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 4622 reflections
a = 15.440 (2) Åθ = 3.0–22.7°
b = 8.7022 (12) ŵ = 0.62 mm1
c = 22.156 (3) ÅT = 298 K
V = 2977.0 (7) Å3Flake, pink
Z = 40.34 × 0.28 × 0.09 mm
F(000) = 1300
Data collection top
Bruker SMART CCD area-detector
diffractometer
3157 independent reflections
Radiation source: fine-focus sealed tube2167 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 26.9°, θmin = 2.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1818
Tmin = 0.816, Tmax = 0.946k = 119
12837 measured reflectionsl = 2713
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + 0.8613P]
where P = (Fo2 + 2Fc2)/3
3157 reflections(Δ/σ)max = 0.011
197 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Co(C13H9N2O)2]·2C3H7NOV = 2977.0 (7) Å3
Mr = 623.57Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 15.440 (2) ŵ = 0.62 mm1
b = 8.7022 (12) ÅT = 298 K
c = 22.156 (3) Å0.34 × 0.28 × 0.09 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3157 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2167 reflections with I > 2σ(I)
Tmin = 0.816, Tmax = 0.946Rint = 0.036
12837 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.03Δρmax = 0.24 e Å3
3157 reflectionsΔρmin = 0.34 e Å3
197 parameters
Special details top

Experimental. ABSCOR BY T.Higashi 8 march,1995

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.02008 (5)0.25000.03984 (15)
O10.40147 (10)0.07066 (19)0.28840 (6)0.0548 (4)
O20.48308 (13)0.3080 (2)0.53185 (8)0.0767 (6)
N10.53688 (11)0.12752 (19)0.32438 (7)0.0382 (4)
N20.53681 (11)0.2071 (2)0.41924 (7)0.0414 (4)
H2A0.52100.21940.45610.050*
N30.51069 (13)0.3913 (2)0.62601 (8)0.0522 (5)
C10.60775 (12)0.2234 (2)0.33281 (9)0.0371 (5)
C20.67200 (14)0.2690 (2)0.29255 (10)0.0473 (5)
H20.67180.23600.25260.057*
C30.73595 (15)0.3649 (3)0.31418 (11)0.0548 (6)
H30.77970.39770.28830.066*
C40.73617 (16)0.4136 (3)0.37414 (11)0.0588 (7)
H40.78030.47810.38730.071*
C50.67330 (16)0.3694 (3)0.41443 (10)0.0542 (6)
H50.67400.40190.45440.065*
C60.60842 (13)0.2734 (2)0.39230 (9)0.0396 (5)
C70.49560 (13)0.1191 (2)0.37745 (8)0.0343 (4)
C80.41866 (13)0.0275 (2)0.39038 (9)0.0374 (5)
C90.38635 (14)0.0222 (2)0.44962 (10)0.0449 (5)
H90.41380.07950.47940.054*
C100.31575 (15)0.0646 (3)0.46486 (11)0.0534 (6)
H100.29600.06660.50450.064*
C110.27404 (15)0.1491 (3)0.42092 (11)0.0568 (6)
H110.22570.20760.43100.068*
C120.30338 (15)0.1473 (3)0.36265 (11)0.0542 (6)
H120.27410.20450.33370.065*
C130.37675 (13)0.0612 (3)0.34506 (9)0.0424 (5)
C140.52757 (18)0.3784 (3)0.56829 (12)0.0634 (7)
H140.57720.42640.55390.076*
C150.5674 (2)0.4749 (3)0.66682 (14)0.0821 (9)
H15A0.59290.40450.69510.123*
H15B0.53440.55080.68830.123*
H15C0.61230.52450.64410.123*
C160.43673 (18)0.3165 (3)0.65240 (12)0.0732 (8)
H16A0.40560.26170.62170.110*
H16B0.39950.39210.67030.110*
H16C0.45570.24570.68290.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0411 (3)0.0512 (3)0.0272 (2)0.0000.00169 (17)0.000
O10.0521 (10)0.0778 (11)0.0346 (8)0.0211 (8)0.0020 (7)0.0004 (8)
O20.0896 (14)0.0933 (14)0.0471 (11)0.0015 (11)0.0029 (10)0.0212 (10)
N10.0390 (10)0.0456 (10)0.0300 (9)0.0014 (8)0.0011 (7)0.0010 (7)
N20.0454 (10)0.0508 (11)0.0279 (9)0.0063 (8)0.0026 (7)0.0028 (8)
N30.0615 (13)0.0562 (12)0.0388 (11)0.0040 (10)0.0039 (9)0.0020 (9)
C10.0357 (11)0.0411 (11)0.0346 (10)0.0010 (9)0.0002 (9)0.0021 (9)
C20.0478 (13)0.0568 (14)0.0374 (11)0.0011 (11)0.0071 (10)0.0027 (10)
C30.0463 (14)0.0619 (15)0.0561 (15)0.0103 (11)0.0105 (11)0.0023 (12)
C40.0506 (15)0.0655 (16)0.0604 (16)0.0200 (12)0.0003 (12)0.0033 (12)
C50.0577 (15)0.0608 (15)0.0440 (13)0.0130 (12)0.0006 (11)0.0083 (11)
C60.0390 (12)0.0444 (12)0.0355 (10)0.0025 (9)0.0018 (9)0.0016 (9)
C70.0379 (11)0.0382 (11)0.0269 (10)0.0034 (9)0.0016 (9)0.0019 (8)
C80.0351 (11)0.0424 (12)0.0348 (11)0.0023 (9)0.0000 (9)0.0058 (9)
C90.0490 (14)0.0492 (13)0.0366 (12)0.0030 (10)0.0051 (10)0.0004 (10)
C100.0519 (14)0.0624 (15)0.0458 (13)0.0038 (12)0.0155 (11)0.0097 (12)
C110.0433 (14)0.0650 (16)0.0620 (17)0.0087 (12)0.0073 (12)0.0149 (13)
C120.0443 (13)0.0664 (16)0.0521 (14)0.0113 (11)0.0065 (11)0.0046 (12)
C130.0358 (12)0.0517 (13)0.0395 (12)0.0022 (10)0.0032 (9)0.0091 (10)
C140.0687 (17)0.0705 (18)0.0510 (16)0.0073 (14)0.0124 (13)0.0001 (14)
C150.094 (2)0.083 (2)0.0694 (19)0.0018 (17)0.0113 (17)0.0150 (16)
C160.077 (2)0.0775 (19)0.0646 (17)0.0041 (15)0.0186 (15)0.0129 (15)
Geometric parameters (Å, º) top
Co1—O11.9135 (15)C4—H40.9300
Co1—O1i1.9135 (15)C5—C61.394 (3)
Co1—N11.9784 (16)C5—H50.9300
Co1—N1i1.9784 (16)C7—C81.459 (3)
O1—C131.315 (2)C8—C91.405 (3)
O2—C141.224 (3)C8—C131.423 (3)
N1—C71.339 (2)C9—C101.369 (3)
N1—C11.389 (2)C9—H90.9300
N2—C71.360 (2)C10—C111.379 (3)
N2—C61.383 (2)C10—H100.9300
N2—H2A0.8600C11—C121.368 (3)
N3—C141.310 (3)C11—H110.9300
N3—C161.439 (3)C12—C131.413 (3)
N3—C151.454 (3)C12—H120.9300
C1—C61.388 (3)C14—H140.9300
C1—C21.392 (3)C15—H15A0.9600
C2—C31.379 (3)C15—H15B0.9600
C2—H20.9300C15—H15C0.9600
C3—C41.394 (3)C16—H16A0.9600
C3—H30.9300C16—H16B0.9600
C4—C51.374 (3)C16—H16C0.9600
O1—Co1—O1i131.26 (11)N1—C7—C8126.16 (18)
O1—Co1—N193.07 (6)N2—C7—C8123.70 (17)
O1i—Co1—N1109.66 (7)C9—C8—C13118.69 (19)
O1—Co1—N1i109.66 (7)C9—C8—C7119.39 (19)
O1i—Co1—N1i93.07 (6)C13—C8—C7121.88 (18)
N1—Co1—N1i123.60 (10)C10—C9—C8122.1 (2)
C13—O1—Co1129.02 (13)C10—C9—H9118.9
C7—N1—C1106.85 (16)C8—C9—H9118.9
C7—N1—Co1124.63 (14)C9—C10—C11119.5 (2)
C1—N1—Co1128.51 (13)C9—C10—H10120.3
C7—N2—C6108.38 (16)C11—C10—H10120.3
C7—N2—H2A125.8C12—C11—C10120.3 (2)
C6—N2—H2A125.8C12—C11—H11119.8
C14—N3—C16121.1 (2)C10—C11—H11119.8
C14—N3—C15122.0 (2)C11—C12—C13122.1 (2)
C16—N3—C15116.8 (2)C11—C12—H12118.9
C6—C1—N1108.77 (17)C13—C12—H12118.9
C6—C1—C2120.93 (19)O1—C13—C12117.6 (2)
N1—C1—C2130.30 (19)O1—C13—C8125.17 (19)
C3—C2—C1117.4 (2)C12—C13—C8117.24 (19)
C3—C2—H2121.3O2—C14—N3125.1 (3)
C1—C2—H2121.3O2—C14—H14117.5
C2—C3—C4121.1 (2)N3—C14—H14117.5
C2—C3—H3119.4N3—C15—H15A109.5
C4—C3—H3119.4N3—C15—H15B109.5
C5—C4—C3122.2 (2)H15A—C15—H15B109.5
C5—C4—H4118.9N3—C15—H15C109.5
C3—C4—H4118.9H15A—C15—H15C109.5
C4—C5—C6116.6 (2)H15B—C15—H15C109.5
C4—C5—H5121.7N3—C16—H16A109.5
C6—C5—H5121.7N3—C16—H16B109.5
N2—C6—C1105.86 (17)H16A—C16—H16B109.5
N2—C6—C5132.3 (2)N3—C16—H16C109.5
C1—C6—C5121.82 (19)H16A—C16—H16C109.5
N1—C7—N2110.13 (17)H16B—C16—H16C109.5
O1i—Co1—O1—C13117.1 (2)C1—N1—C7—N20.6 (2)
N1—Co1—O1—C132.6 (2)Co1—N1—C7—N2179.44 (13)
N1i—Co1—O1—C13130.02 (19)C1—N1—C7—C8178.17 (18)
O1—Co1—N1—C70.38 (17)Co1—N1—C7—C81.8 (3)
O1i—Co1—N1—C7135.71 (16)C6—N2—C7—N10.9 (2)
N1i—Co1—N1—C7116.49 (17)C6—N2—C7—C8177.94 (18)
O1—Co1—N1—C1179.71 (17)N1—C7—C8—C9175.51 (19)
O1i—Co1—N1—C144.19 (18)N2—C7—C8—C93.1 (3)
N1i—Co1—N1—C163.60 (15)N1—C7—C8—C132.3 (3)
C7—N1—C1—C60.1 (2)N2—C7—C8—C13179.04 (19)
Co1—N1—C1—C6179.93 (14)C13—C8—C9—C100.4 (3)
C7—N1—C1—C2179.2 (2)C7—C8—C9—C10178.3 (2)
Co1—N1—C1—C20.7 (3)C8—C9—C10—C110.5 (3)
C6—C1—C2—C30.1 (3)C9—C10—C11—C120.5 (4)
N1—C1—C2—C3179.1 (2)C10—C11—C12—C130.4 (4)
C1—C2—C3—C40.2 (4)Co1—O1—C13—C12176.47 (16)
C2—C3—C4—C50.2 (4)Co1—O1—C13—C82.8 (3)
C3—C4—C5—C60.3 (4)C11—C12—C13—O1177.9 (2)
C7—N2—C6—C10.8 (2)C11—C12—C13—C81.4 (3)
C7—N2—C6—C5178.3 (2)C9—C8—C13—O1177.9 (2)
N1—C1—C6—N20.4 (2)C7—C8—C13—O10.1 (3)
C2—C1—C6—N2179.79 (19)C9—C8—C13—C121.3 (3)
N1—C1—C6—C5178.78 (19)C7—C8—C13—C12179.18 (19)
C2—C1—C6—C50.6 (3)C16—N3—C14—O22.0 (4)
C4—C5—C6—N2179.6 (2)C15—N3—C14—O2179.0 (3)
C4—C5—C6—C10.7 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O20.861.942.772 (2)164

Experimental details

Crystal data
Chemical formula[Co(C13H9N2O)2]·2C3H7NO
Mr623.57
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)298
a, b, c (Å)15.440 (2), 8.7022 (12), 22.156 (3)
V3)2977.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.62
Crystal size (mm)0.34 × 0.28 × 0.09
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.816, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
12837, 3157, 2167
Rint0.036
(sin θ/λ)max1)0.636
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.107, 1.03
No. of reflections3157
No. of parameters197
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.34

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O20.861.942.772 (2)163.5
 

Acknowledgements

This work was supported by the State Key Laboratory of Fine Chemicals, Dalian University of Technology, China.

References

First citationBenzekri, A., Dubourdeaux, P., Latour, J. M., Rey, P. & Laugier, J. (1991). J. Chem. Soc. Dalton Trans. pp. 3359–3365.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrane, J. D., Hughes, R. & Sinn, E. (1995). Inorg. Chim. Acta, 237, 181–185.  CSD CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLorosch, J. & Haase, W. (1985). Inorg. Chim. Acta, 108, 35–39.  CSD CrossRef Web of Science Google Scholar
First citationMaekawa, M., Kitagawa, S., Munakata, M. & Masuda, H. (1989). Inorg. Chem. 28, 1904–1909.  CSD CrossRef CAS Web of Science Google Scholar
First citationMcKee, V., Dagdigian, J. V., Bau, R. & Reed, C. A. (1981). J. Am. Chem. Soc. 103, 7000–7001.  CSD CrossRef CAS Web of Science Google Scholar
First citationNalwa, H. S., Rohwer, L. S. & Heeger, A. J. (2003). Editors. Handbook of Luminescence, Display Materials, and Devices. Stevenson Ranch, CA: American Scientific Publishers.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSundburg, R. J. & Martin, R. B. (1974). Chem. Rev. 74, 471–517.  CrossRef Web of Science Google Scholar
First citationTong, Y.-P., Zheng, S.-L. & Chen, X.-M. (2005). Inorg. Chem. 44, 4270–4275.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds