metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
RETRACTED ARTICLE

This article has been retracted. To view the retraction notice, click here.

catena-Poly[[(2,2′-bi­pyridine-κ2N,N′)nickel(II)]-μ-oxalato-κ4O1,O2:O1′,O2′]

aInstitute of Immunology, Key Laboratory of Natural Drugs and Immunological Engineering of Henan Province, College of Medicine, Henan University, Kaifeng 475003, People's Republic of China, bFirst Affiliated Hospital, Henan University, Kaifeng 475003, People's Republic of China, and cCollege of Chemistry and Chemical Engineering, Henan University, Kaifeng 475003, People's Republic of China
*Correspondence e-mail: mayf_hd@126.com

(Received 4 August 2008; accepted 4 September 2008; online 13 September 2008)

The title compound, [Ni(C2O4)(C10H8N2)]n, is isostructural with its MnII, FeII, CuII and ZnII analogues. Each NiII atom is chelated by two oxalate ligands and one 2,2′-bipyridine, forming a slightly distorted octa­hedral geometry. Oxlate acts as a bridge to link neighbouring pairs of NiII cations, forming a one-dimensional wave-like chain. The crystal showed partial inversion twinning.

Related literature

For related literature, see: Hong & Do (1997[Hong, C. S. & Do, Y. (1997). Inorg. Chem. 36, 5684-5685.]); Eddaoudi et al. (2001[Eddaoudi, M., Kim, J., Wachter, J. B., Chae, H. K., Keeffe, M. O. & Yaghi, O. M. (2001). J. Am. Chem. Soc. 123, 4368-4369.]); Liang et al. (2004[Liang, M., Sun, Y. Q., Liao, D. Z., Jiang, Z. H., Yan, S. P. & Cheng, P. (2004). J. Coord. Chem. 57, 275-280.]); Shi et al. (2005[Shi, J. M., Yin, H. L. & Wu, C. J. (2005). J. Coord. Chem. 58, 915-920.]). For the isostructural MnII, FeII, CuII and ZnII complexes, see: Li et al. (2006[Li, L. L., Lin, K. J., Ho, C. J., Sun, C. P. & Yang, H. D. (2006). Chem. Commun. pp. 1286-1287.]); Deguenon et al. (1990[Deguenon, D., Bernardinelli, G., Tuchagues, J. P. & Castan, P. (1990). Inorg. Chem. 29, 3031-3039.]); Fun et al. (1999[Fun, H.-K., Shanmuga Sundara Raj, S., Fang, X., Zheng, L.-M. & Xin, X.-Q. (1999). Acta Cryst. C55, 903-905.]); Luo et al. (2001[Luo, J.-H., Hong, M.-C., Liang, Y.-C. & Cao, R. (2001). Acta Cryst. E57, m361-m362.]); Yu et al. (2006[Yu, J. H., Hou, Q., Bi, M. H., Lu, Z. L., Zhang, X., Qu, X. J., Lu, J. & Xu, J. Q. (2006). J. Mol. Struct. 800, 69-75.]); Lin et al. (2006[Lin, X.-R., Ye, B.-Z., Liu, J.-S., Wei, C.-X. & Chen, J.-X. (2006). Acta Cryst. E62, m2130-m2132.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C2O4)(C10H8N2)]

  • Mr = 302.91

  • Orthorhombic, P n a 21

  • a = 9.6486 (14) Å

  • b = 9.2627 (14) Å

  • c = 13.883 (2) Å

  • V = 1240.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.57 mm−1

  • T = 296 (2) K

  • 0.12 × 0.10 × 0.06 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.834, Tmax = 0.912

  • 6146 measured reflections

  • 2114 independent reflections

  • 1810 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.154

  • S = 1.00

  • 2114 reflections

  • 173 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.43 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 971 Friedel pairs

  • Flack parameter: 0.20 (3)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design of coordination compounds has attracted long-lasting research interest not only because of their appealing structural and topological novelty but also due to their unusual optical, electronic, magnetic and catalytic properties, and their further potential medical value derived from their antiviral properties and the inhibition of angiogenesis. To date, much of the work has been focused on coordination polymers with organic acid ligands (Hong et al. 1997; Eddaoudi et al. 2001; Liang et al. 2004; Shi et al.2005).

Here we report the synthesis and X-ray crystal structure analysis of the title compound, (I), with a bridging oxalate ligand. It is isostructural with its MnII, FeII, CuII, and ZnII analogues (Li et al., 2006; Deguenon et al., 1990; Fun et al., 1999; Luo et al., 2001; Yu et al., 2006; Lin et al., 2006).

As shown in Fig. 1, the Ni(II) atom is chelated by two oxlates and one 2,2'-bipyridine, forming a slightly distorted octahedral geometry. Oxalate acts as a bridge to link neighboring pairs of Ni(II) cations, forming a one-dimensional wave-like chain (Fig. 2). The Ni—N and Ni—O bond lengths are in the ranges 2.239 (5)–2.243 (5) and 2.161 (4)–2.166 (4) Å, respectively.

Related literature top

For related literature, see: Hong & Do (1997); Eddaoudi et al. (2001); Liang et al. (2004); Shi et al. (2005). For the isostructural MnII, FeII, CuII and ZnII complexes, see: Li et al. (2006); Deguenon et al. (1990); Fun et al. (1999); Luo et al. (2001); Yu et al. (2006); Lin et al. (2006).

Experimental top

A mixture of nickel(II) nitrate hexahydrate (0.1 mmol), oxalic acid (0.2 mmol), 2,2'-bipyridine (0.1 mmol), and water (16 ml) in a 25 ml Teflon-lined stainless steel autoclave was kept at 473 K for three days. Green crystals were obtained after cooling to room temperature, with a yield of 6%. Anal. Calc. for C12H8N2NiO4: C 47.54, H 2.64, N 9.24%; Found: C 47.51, H 2.58, N 9.16%.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination of the Ni atom in the title structure, drawn with 30% probability displacement ellipsoids. [Symmetry code: (I) 1/2+x, 1/2-y, z.]
[Figure 2] Fig. 2. The chain of the title compound, viewed along the [010] direction.
catena-Poly[[(2,2'-bipyridine-κ2N,N')nickel(II)]- µ-oxalato-κ4O1,O2:O1',O2'] top
Crystal data top
[Ni(C2O4)(C10H8N2)]F(000) = 616
Mr = 302.91Dx = 1.622 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1779 reflections
a = 9.6486 (14) Åθ = 2.6–21.5°
b = 9.2627 (14) ŵ = 1.57 mm1
c = 13.883 (2) ÅT = 296 K
V = 1240.7 (3) Å3Block, green
Z = 40.12 × 0.10 × 0.06 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2114 independent reflections
Radiation source: fine-focus sealed tube1810 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 25.1°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 115
Tmin = 0.834, Tmax = 0.912k = 1111
6146 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.118P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2114 reflectionsΔρmax = 0.44 e Å3
173 parametersΔρmin = 0.44 e Å3
1 restraintAbsolute structure: Flack (1983), 971 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.20 (3)
Crystal data top
[Ni(C2O4)(C10H8N2)]V = 1240.7 (3) Å3
Mr = 302.91Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 9.6486 (14) ŵ = 1.57 mm1
b = 9.2627 (14) ÅT = 296 K
c = 13.883 (2) Å0.12 × 0.10 × 0.06 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2114 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1810 reflections with I > 2σ(I)
Tmin = 0.834, Tmax = 0.912Rint = 0.030
6146 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.154Δρmax = 0.44 e Å3
S = 1.00Δρmin = 0.44 e Å3
2114 reflectionsAbsolute structure: Flack (1983), 971 Friedel pairs
173 parametersAbsolute structure parameter: 0.20 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.88396 (7)1.09402 (7)0.25107 (8)0.04352 (14)
O11.0093 (4)1.2363 (5)0.1613 (3)0.0503 (11)
O21.0673 (4)1.1297 (4)0.3368 (3)0.0415 (9)
O30.7686 (4)1.2511 (5)0.3347 (3)0.0452 (10)
O40.7033 (4)1.1389 (4)0.1640 (3)0.0416 (9)
N10.8006 (5)0.9059 (5)0.3352 (4)0.0401 (11)
N20.9510 (5)0.8925 (5)0.1747 (4)0.0395 (11)
C11.1555 (6)1.2124 (6)0.3004 (4)0.0380 (12)
C21.1199 (4)1.2745 (6)0.1993 (4)0.0305 (12)
C30.7196 (8)0.9174 (8)0.4115 (5)0.0535 (17)
H30.69641.00990.43200.064*
C40.6668 (8)0.8030 (10)0.4630 (5)0.070 (2)
H40.61060.81630.51680.084*
C50.7033 (9)0.6629 (9)0.4291 (6)0.073 (2)
H50.67280.58090.46130.087*
C60.7820 (8)0.6507 (7)0.3504 (6)0.0633 (19)
H60.80540.55980.32690.076*
C70.8286 (6)0.7736 (6)0.3038 (4)0.0405 (13)
C80.9159 (6)0.7661 (7)0.2154 (4)0.0408 (13)
C90.9646 (9)0.6356 (7)0.1766 (6)0.0627 (19)
H90.94470.54840.20670.075*
C101.0418 (10)0.6383 (10)0.0936 (7)0.081 (3)
H101.07130.55190.06630.097*
C111.0758 (8)0.7647 (9)0.0510 (5)0.066 (2)
H111.12920.76690.00480.080*
C121.0277 (8)0.8924 (8)0.0937 (5)0.0601 (19)
H121.04950.98020.06510.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0387 (2)0.0456 (2)0.0463 (2)0.0000 (2)0.0004 (3)0.0045 (3)
O10.042 (2)0.065 (3)0.044 (3)0.012 (2)0.0101 (19)0.022 (2)
O20.0384 (19)0.052 (2)0.034 (2)0.0078 (19)0.0056 (16)0.0150 (18)
O30.039 (2)0.061 (2)0.036 (2)0.0098 (19)0.0144 (18)0.0128 (19)
O40.042 (2)0.048 (2)0.035 (2)0.0017 (18)0.0036 (17)0.0095 (18)
N10.043 (3)0.045 (3)0.032 (2)0.0063 (18)0.006 (2)0.0005 (19)
N20.045 (3)0.038 (2)0.036 (3)0.0049 (19)0.008 (2)0.002 (2)
C10.038 (3)0.036 (3)0.040 (3)0.007 (3)0.004 (3)0.004 (3)
C20.028 (3)0.034 (3)0.029 (3)0.002 (2)0.0031 (19)0.005 (2)
C30.062 (4)0.058 (4)0.041 (4)0.005 (3)0.016 (3)0.005 (3)
C40.068 (4)0.098 (6)0.043 (4)0.024 (5)0.015 (4)0.011 (4)
C50.087 (5)0.071 (5)0.060 (4)0.034 (4)0.011 (4)0.021 (4)
C60.088 (5)0.039 (3)0.063 (4)0.022 (3)0.004 (4)0.002 (3)
C70.040 (3)0.045 (3)0.037 (3)0.008 (3)0.000 (3)0.005 (2)
C80.045 (3)0.046 (3)0.031 (3)0.008 (3)0.000 (3)0.005 (2)
C90.089 (5)0.041 (3)0.058 (4)0.012 (3)0.002 (4)0.005 (3)
C100.096 (7)0.073 (5)0.073 (5)0.040 (5)0.009 (5)0.017 (5)
C110.091 (5)0.070 (5)0.037 (4)0.028 (4)0.012 (4)0.003 (3)
C120.069 (5)0.064 (4)0.047 (4)0.023 (3)0.014 (3)0.012 (3)
Geometric parameters (Å, º) top
Ni1—O42.162 (4)C3—C41.376 (10)
Ni1—O22.157 (4)C3—H30.930
Ni1—O12.180 (4)C4—C51.425 (13)
Ni1—O32.169 (4)C4—H40.930
Ni1—N22.242 (5)C5—C61.335 (12)
Ni1—N12.246 (5)C5—H50.930
O1—C21.242 (6)C6—C71.385 (9)
O2—C11.251 (7)C6—H60.930
O3—C1i1.238 (6)C7—C81.491 (8)
O4—C2i1.237 (6)C8—C91.404 (9)
N1—C31.322 (8)C9—C101.372 (12)
N1—C71.328 (7)C9—H90.930
N2—C81.343 (8)C10—C111.353 (13)
N2—C121.346 (9)C10—H100.930
C1—O3ii1.238 (6)C11—C121.402 (10)
C1—C21.554 (6)C11—H110.930
C2—O4ii1.237 (6)C12—H120.930
O4—Ni1—O2160.07 (14)N1—C3—C4125.0 (7)
O4—Ni1—O190.65 (14)N1—C3—H3117.5
O2—Ni1—O176.55 (13)C4—C3—H3117.5
O4—Ni1—O375.90 (14)C3—C4—C5115.9 (7)
O2—Ni1—O391.31 (15)C3—C4—H4122.0
O1—Ni1—O3100.66 (17)C5—C4—H4122.0
O4—Ni1—N297.39 (17)C6—C5—C4119.3 (7)
O2—Ni1—N298.72 (18)C6—C5—H5120.4
O1—Ni1—N294.20 (18)C4—C5—H5120.4
O3—Ni1—N2163.69 (17)C5—C6—C7119.8 (7)
O4—Ni1—N198.71 (17)C5—C6—H6120.1
O2—Ni1—N197.23 (17)C7—C6—H6120.1
O1—Ni1—N1164.72 (18)N1—C7—C6122.7 (6)
O3—Ni1—N193.35 (18)N1—C7—C8115.3 (5)
N2—Ni1—N172.74 (17)C6—C7—C8122.0 (6)
C2—O1—Ni1114.0 (3)N2—C8—C9120.3 (6)
C1—O2—Ni1115.4 (4)N2—C8—C7116.6 (5)
C1i—O3—Ni1115.4 (3)C9—C8—C7123.0 (6)
C2i—O4—Ni1115.3 (3)C8—C9—C10119.2 (7)
C3—N1—C7117.2 (5)C8—C9—H9120.4
C3—N1—Ni1124.5 (4)C10—C9—H9120.4
C7—N1—Ni1118.2 (4)C11—C10—C9121.0 (7)
C8—N2—C12119.3 (5)C11—C10—H10119.5
C8—N2—Ni1117.0 (4)C9—C10—H10119.5
C12—N2—Ni1123.7 (4)C10—C11—C12117.7 (7)
O2—C1—O3ii127.7 (5)C10—C11—H11121.2
O2—C1—C2116.2 (5)C12—C11—H11121.2
O3ii—C1—C2116.2 (5)N2—C12—C11122.4 (7)
O4ii—C2—O1125.1 (5)N2—C12—H12118.8
O4ii—C2—C1117.0 (4)C11—C12—H12118.8
O1—C2—C1117.8 (4)
O4—Ni1—O1—C2162.4 (4)O1—Ni1—N2—C127.8 (6)
O2—Ni1—O1—C22.1 (4)O3—Ni1—N2—C12147.8 (6)
O3—Ni1—O1—C286.7 (4)N1—Ni1—N2—C12179.8 (6)
N2—Ni1—O1—C2100.1 (4)Ni1—O2—C1—O3ii179.5 (5)
N1—Ni1—O1—C269.5 (8)Ni1—O2—C1—C20.7 (6)
O4—Ni1—O2—C149.9 (7)Ni1—O1—C2—O4ii175.8 (5)
O1—Ni1—O2—C11.4 (4)Ni1—O1—C2—C12.5 (6)
O3—Ni1—O2—C199.2 (4)O2—C1—C2—O4ii177.1 (6)
N2—Ni1—O2—C193.7 (4)O3ii—C1—C2—O4ii3.9 (7)
N1—Ni1—O2—C1167.2 (4)O2—C1—C2—O11.3 (7)
O4—Ni1—O3—C1i3.6 (4)O3ii—C1—C2—O1177.7 (6)
O2—Ni1—O3—C1i168.2 (4)C7—N1—C3—C42.7 (11)
O1—Ni1—O3—C1i91.6 (4)Ni1—N1—C3—C4179.3 (6)
N2—Ni1—O3—C1i63.7 (8)N1—C3—C4—C50.5 (11)
N1—Ni1—O3—C1i94.5 (4)C3—C4—C5—C61.4 (12)
O2—Ni1—O4—C2i52.8 (7)C4—C5—C6—C71.0 (12)
O1—Ni1—O4—C2i102.2 (4)C3—N1—C7—C63.1 (9)
O3—Ni1—O4—C2i1.3 (4)Ni1—N1—C7—C6179.9 (5)
N2—Ni1—O4—C2i163.5 (4)C3—N1—C7—C8177.8 (6)
N1—Ni1—O4—C2i89.9 (4)Ni1—N1—C7—C80.9 (6)
O4—Ni1—N1—C380.8 (6)C5—C6—C7—N11.3 (11)
O2—Ni1—N1—C387.1 (6)C5—C6—C7—C8179.6 (7)
O1—Ni1—N1—C3152.0 (6)C12—N2—C8—C93.2 (9)
O3—Ni1—N1—C34.6 (6)Ni1—N2—C8—C9174.3 (5)
N2—Ni1—N1—C3175.9 (6)C12—N2—C8—C7178.8 (6)
O4—Ni1—N1—C795.7 (4)Ni1—N2—C8—C73.6 (7)
O2—Ni1—N1—C796.3 (4)N1—C7—C8—N23.0 (7)
O1—Ni1—N1—C731.5 (9)C6—C7—C8—N2177.8 (6)
O3—Ni1—N1—C7171.9 (4)N1—C7—C8—C9174.9 (6)
N2—Ni1—N1—C70.6 (4)C6—C7—C8—C94.3 (9)
O4—Ni1—N2—C899.2 (5)N2—C8—C9—C103.7 (11)
O2—Ni1—N2—C892.6 (4)C7—C8—C9—C10178.5 (7)
O1—Ni1—N2—C8169.6 (4)C8—C9—C10—C112.4 (13)
O3—Ni1—N2—C834.7 (9)C9—C10—C11—C120.9 (13)
N1—Ni1—N2—C82.3 (4)C8—N2—C12—C111.7 (11)
O4—Ni1—N2—C1283.4 (6)Ni1—N2—C12—C11175.7 (6)
O2—Ni1—N2—C1284.9 (6)C10—C11—C12—N20.4 (12)
Symmetry codes: (i) x1/2, y+5/2, z; (ii) x+1/2, y+5/2, z.

Experimental details

Crystal data
Chemical formula[Ni(C2O4)(C10H8N2)]
Mr302.91
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)9.6486 (14), 9.2627 (14), 13.883 (2)
V3)1240.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.57
Crystal size (mm)0.12 × 0.10 × 0.06
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.834, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
6146, 2114, 1810
Rint0.030
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.154, 1.00
No. of reflections2114
No. of parameters173
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.44
Absolute structureFlack (1983), 971 Friedel pairs
Absolute structure parameter0.20 (3)

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors are grateful for financial support from the Scientific Research Foundation of Outstanding Talented Persons of Henan Province (grant No. 74200510014).

References

First citationBruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationDeguenon, D., Bernardinelli, G., Tuchagues, J. P. & Castan, P. (1990). Inorg. Chem. 29, 3031–3039.  CSD CrossRef CAS Web of Science
First citationEddaoudi, M., Kim, J., Wachter, J. B., Chae, H. K., Keeffe, M. O. & Yaghi, O. M. (2001). J. Am. Chem. Soc. 123, 4368-4369.  Web of Science CSD CrossRef PubMed CAS
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationFun, H.-K., Shanmuga Sundara Raj, S., Fang, X., Zheng, L.-M. & Xin, X.-Q. (1999). Acta Cryst. C55, 903–905.  Web of Science CSD CrossRef CAS IUCr Journals
First citationHong, C. S. & Do, Y. (1997). Inorg. Chem. 36, 5684–5685.  CSD CrossRef PubMed CAS Web of Science
First citationLi, L. L., Lin, K. J., Ho, C. J., Sun, C. P. & Yang, H. D. (2006). Chem. Commun. pp. 1286–1287.  Web of Science CSD CrossRef
First citationLiang, M., Sun, Y. Q., Liao, D. Z., Jiang, Z. H., Yan, S. P. & Cheng, P. (2004). J. Coord. Chem. 57, 275–280.  Web of Science CSD CrossRef CAS
First citationLin, X.-R., Ye, B.-Z., Liu, J.-S., Wei, C.-X. & Chen, J.-X. (2006). Acta Cryst. E62, m2130–m2132.  Web of Science CSD CrossRef IUCr Journals
First citationLuo, J.-H., Hong, M.-C., Liang, Y.-C. & Cao, R. (2001). Acta Cryst. E57, m361–m362.  Web of Science CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationShi, J. M., Yin, H. L. & Wu, C. J. (2005). J. Coord. Chem. 58, 915–920.  Web of Science CSD CrossRef CAS
First citationYu, J. H., Hou, Q., Bi, M. H., Lu, Z. L., Zhang, X., Qu, X. J., Lu, J. & Xu, J. Q. (2006). J. Mol. Struct. 800, 69–75.  Web of Science CSD CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds