organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl (1H-pyrrol-2-ylcarbonyl­amino)acetate

aDepartment of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
*Correspondence e-mail: xczeng@126.com

(Received 4 August 2008; accepted 26 August 2008; online 6 September 2008)

In the crystal structure of the title compound, C8H10N2O3, mol­ecules are linked by N—H⋯O hydrogen bonds, forming ribbons of centrosymmetric dimers extending along the c axis.

Related literature

For related literature, see: Banwell et al. (2006[Banwell, M. G., Hamel, E., Hockless, D. C. R., Verdier-Pinard, P., Willis, A. C. & Wong, D. J. (2006). Bioorg. Med. Chem. 14, 4627-4638.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Faulkner (2002[Faulkner, D. J. (2002). Nat. Prod. Rep. 18, 1-48.]); Sosa et al. (2002[Sosa, A. C. B., Yakushijin, K. & Horne, D. A. (2002). J. Org. Chem. 67, 4498-4500.]); Zeng (2006[Zeng, X.-C. (2006). Acta Cryst. E62, o5505-o5507.]); Zeng et al. (2007[Zeng, X.-C., Zeng, J., Li, X. & Ling, X. (2007). Acta Cryst. E63, o3424.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10N2O3

  • Mr = 182.18

  • Monoclinic, P 21 /n

  • a = 11.3398 (19) Å

  • b = 5.0732 (9) Å

  • c = 16.500 (3) Å

  • β = 108.060 (3)°

  • V = 902.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 (2) K

  • 0.48 × 0.41 × 0.21 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.952, Tmax = 0.979

  • 4219 measured reflections

  • 1576 independent reflections

  • 1417 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.166

  • S = 1.10

  • 1576 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 1.93 2.782 (2) 162
N2—H2⋯O2ii 0.88 2.09 2.9372 (19) 161
Symmetry codes: (i) -x+2, -y, -z+1; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrrole derivatives are well known in many marine organisms (Faulkner, 2002). Some show important bioactivities, such as antitumor activity (Banwell et al., 2006) and protein kinase inhibiting activity (Sosa et al., 2002). This is the reason why they have attracted our interest. This study follows our previous studies on methyl 2-(4,5-dibromo-1H-pyrrole-2-carboxamido)propionate (Zeng et al., 2007) and 3-bromo-1-methyl-6,7-dihydropyrrolo[2,3-c]azepine- 4,8(1H,5H)-dione (Zeng, 2006).

In the crystal structure, molecules of the title compound are linked through N1—H1···O1i hydrogen bonds to form centrosymmetric dimers (Fig. 2) of graph-set motif R22(10) (Bernstein et al., 1995), which are linked by N2—H2···O2ii hydrogen bonds, generating ribbons extending along the c axis (also shown in Fig. 2). Bond lengths and angles are unexceptional.

Related literature top

For related literature, see: Banwell et al. (2006); Bernstein et al. (1995); Faulkner (2002); Sosa et al. (2002); Zeng (2006); Zeng et al. (2007).

Experimental top

The hydrochloric acid salt of glycine methyl ester (0.63 g, 5 mmol) and 2-trichloroacetylpyrrole (1.06 g, 5 mmol) were added to acetonitrile (12 ml), followed by the dropwise addition of triethylamine (1.4 ml). The mixture was stirred at room temperature for 10 h and then poured into water. After filtration, the precipitate was collected as a yellow solid. The impure product was dissolved in EtOH at room temperature. Light-yellow monoclinic crystals suitable for X-ray analysis (m.p. 420 K, 95.6% yield) grew over a period of one week when the solution was exposed to the air. CH&N elemental analysis. Calc. for C8H10N2O3: C 52.74, H 5.53, N 15.38%; found: C 52.78, H 5.59, N 15.49%.

Refinement top

H atoms were positioned geometrically [C—H = 0.99Å for CH2, 0.98Å for CH3, 0.95Å for CH (aromatic), and N—H = 0.88 Å] and refined using a riding model, with Uiso = 1.2Ueq (1.5Ueq for the methyl group) of the parent atom.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Ribbons of dimers formed by hydrogen bonds (dashed lines).
Methyl (1H-pyrrol-2-ylcarbonylamino)acetate top
Crystal data top
C8H10N2O3Dx = 1.341 Mg m3
Mr = 182.18Melting point: 420 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.3398 (19) ÅCell parameters from 3468 reflections
b = 5.0732 (9) Åθ = 2.6–27.0°
c = 16.500 (3) ŵ = 0.10 mm1
β = 108.060 (3)°T = 173 K
V = 902.5 (3) Å3Block, light yellow
Z = 40.48 × 0.41 × 0.21 mm
F(000) = 384
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
1576 independent reflections
Radiation source: fine-focus sealed tube1417 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1313
Tmin = 0.952, Tmax = 0.979k = 65
4219 measured reflectionsl = 1619
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.1092P)2 + 0.2414P]
where P = (Fo2 + 2Fc2)/3
1576 reflections(Δ/σ)max = 0.001
119 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C8H10N2O3V = 902.5 (3) Å3
Mr = 182.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.3398 (19) ŵ = 0.10 mm1
b = 5.0732 (9) ÅT = 173 K
c = 16.500 (3) Å0.48 × 0.41 × 0.21 mm
β = 108.060 (3)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
1576 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
1417 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.979Rint = 0.033
4219 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.10Δρmax = 0.21 e Å3
1576 reflectionsΔρmin = 0.31 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.89632 (13)0.2572 (2)0.45357 (8)0.0387 (4)
O20.63332 (13)0.2895 (3)0.31013 (8)0.0391 (4)
N20.85781 (14)0.5697 (3)0.35256 (9)0.0343 (4)
H20.87770.64720.31090.041*
O30.58657 (13)0.4945 (3)0.41547 (9)0.0513 (5)
C31.06971 (17)0.3350 (4)0.29921 (12)0.0364 (5)
H31.04140.47780.26080.044*
N11.08932 (14)0.0465 (3)0.40331 (10)0.0343 (4)
H11.07730.03860.44660.041*
C50.92253 (15)0.3607 (3)0.39334 (10)0.0306 (5)
C60.75496 (17)0.6645 (3)0.37859 (12)0.0352 (5)
H6A0.72110.82660.34640.042*
H6B0.78470.70990.44000.042*
C70.65395 (17)0.4608 (3)0.36324 (11)0.0329 (5)
C41.02305 (17)0.2601 (3)0.36367 (11)0.0313 (5)
C11.17634 (18)0.0142 (4)0.36582 (13)0.0394 (5)
H1A1.23440.15460.38170.047*
C21.16634 (18)0.1618 (4)0.30085 (13)0.0413 (5)
H2A1.21590.16520.26380.050*
C80.4845 (3)0.3088 (6)0.40341 (18)0.0720 (9)
H8A0.42820.32310.34500.108*
H8B0.43910.34940.44370.108*
H8C0.51740.12900.41350.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0451 (8)0.0384 (8)0.0386 (8)0.0040 (6)0.0217 (6)0.0103 (5)
O20.0448 (8)0.0368 (7)0.0392 (8)0.0018 (6)0.0180 (6)0.0094 (6)
N20.0403 (9)0.0297 (8)0.0388 (9)0.0010 (6)0.0207 (7)0.0065 (6)
O30.0508 (9)0.0644 (10)0.0499 (9)0.0184 (7)0.0319 (8)0.0247 (7)
C30.0388 (10)0.0350 (10)0.0387 (10)0.0025 (8)0.0166 (8)0.0063 (8)
N10.0376 (9)0.0304 (8)0.0385 (9)0.0018 (6)0.0170 (7)0.0044 (6)
C50.0330 (9)0.0288 (10)0.0315 (9)0.0055 (7)0.0120 (8)0.0008 (7)
C60.0423 (11)0.0274 (9)0.0394 (10)0.0022 (7)0.0178 (8)0.0003 (7)
C70.0383 (10)0.0322 (9)0.0304 (9)0.0046 (7)0.0141 (8)0.0008 (7)
C40.0341 (9)0.0270 (9)0.0337 (10)0.0042 (7)0.0119 (8)0.0006 (7)
C10.0368 (10)0.0345 (10)0.0502 (12)0.0011 (8)0.0184 (9)0.0004 (8)
C20.0416 (11)0.0416 (11)0.0492 (12)0.0029 (8)0.0265 (9)0.0022 (9)
C80.0677 (16)0.097 (2)0.0690 (16)0.0400 (15)0.0468 (14)0.0364 (15)
Geometric parameters (Å, º) top
O1—C51.239 (2)N1—H10.880
O2—C71.204 (2)C5—C41.465 (2)
N2—C51.345 (2)C6—C71.505 (3)
N2—C61.444 (2)C6—H6A0.990
N2—H20.880C6—H6B0.990
O3—C71.328 (2)C1—C21.373 (3)
O3—C81.458 (3)C1—H1A0.950
C3—C41.380 (2)C2—H2A0.950
C3—C21.398 (3)C8—H8A0.980
C3—H30.950C8—H8B0.980
N1—C11.353 (2)C8—H8C0.980
N1—C41.365 (2)
C5—N2—C6118.64 (14)O2—C7—O3122.96 (17)
C5—N2—H2120.7O2—C7—C6125.73 (17)
C6—N2—H2120.7O3—C7—C6111.30 (15)
C7—O3—C8114.87 (16)N1—C4—C3107.59 (16)
C4—C3—C2107.31 (17)N1—C4—C5119.11 (15)
C4—C3—H3126.3C3—C4—C5133.30 (17)
C2—C3—H3126.3N1—C1—C2108.28 (17)
C1—N1—C4109.46 (15)N1—C1—H1A125.9
C1—N1—H1125.3C2—C1—H1A125.9
C4—N1—H1125.3C1—C2—C3107.37 (17)
O1—C5—N2120.38 (16)C1—C2—H2A126.3
O1—C5—C4121.72 (16)C3—C2—H2A126.3
N2—C5—C4117.89 (14)O3—C8—H8A109.5
N2—C6—C7111.34 (14)O3—C8—H8B109.5
N2—C6—H6A109.4H8A—C8—H8B109.5
C7—C6—H6A109.4O3—C8—H8C109.5
N2—C6—H6B109.4H8A—C8—H8C109.5
C7—C6—H6B109.4H8B—C8—H8C109.5
H6A—C6—H6B108.0
C6—N2—C5—O12.1 (2)C2—C3—C4—N10.2 (2)
C6—N2—C5—C4177.39 (15)C2—C3—C4—C5179.42 (19)
C5—N2—C6—C763.6 (2)O1—C5—C4—N10.2 (3)
C8—O3—C7—O20.4 (3)N2—C5—C4—N1179.30 (14)
C8—O3—C7—C6178.56 (19)O1—C5—C4—C3179.36 (19)
N2—C6—C7—O226.5 (3)N2—C5—C4—C30.1 (3)
N2—C6—C7—O3154.55 (16)C4—N1—C1—C20.1 (2)
C1—N1—C4—C30.2 (2)N1—C1—C2—C30.0 (2)
C1—N1—C4—C5179.57 (16)C4—C3—C2—C10.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.932.782 (2)162
N2—H2···O2ii0.882.092.9372 (19)161
Symmetry codes: (i) x+2, y, z+1; (ii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H10N2O3
Mr182.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)11.3398 (19), 5.0732 (9), 16.500 (3)
β (°) 108.060 (3)
V3)902.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.48 × 0.41 × 0.21
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.952, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
4219, 1576, 1417
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.166, 1.10
No. of reflections1576
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.31

Computer programs: SMART (Bruker, 1999), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.932.782 (2)162.1
N2—H2···O2ii0.882.092.9372 (19)161.2
Symmetry codes: (i) x+2, y, z+1; (ii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the Natural Science Foundation of Guangdong Province, China (No. 06300581) for generously supporting this study.

References

First citationBanwell, M. G., Hamel, E., Hockless, D. C. R., Verdier-Pinard, P., Willis, A. C. & Wong, D. J. (2006). Bioorg. Med. Chem. 14, 4627–4638.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFaulkner, D. J. (2002). Nat. Prod. Rep. 18, 1–48.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSosa, A. C. B., Yakushijin, K. & Horne, D. A. (2002). J. Org. Chem. 67, 4498–4500.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZeng, X.-C. (2006). Acta Cryst. E62, o5505–o5507.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, X.-C., Zeng, J., Li, X. & Ling, X. (2007). Acta Cryst. E63, o3424.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds