organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o2009-o2010

1-Bromo­acetyl-2,6-bis­­(4-meth­oxy­phen­yl)-3,5-di­methyl­piperidin-4-one

aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, India, bDivision of Image and Information Engineering, Pukyong National University, Busan 608-739, Republic of Korea, and cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 15 September 2008; accepted 19 September 2008; online 27 September 2008)

In the title compound, C23H26BrNO4, the piperidinone ring adopts a boat conformation. The dihedral angle between the two benzene rings is 70.9 (1)°. The two meth­oxy groups are close to coplanar with the attached benzene rings [C—C—O—C torsion angles of 6.3 (5) and 16.4 (4)°]. A weak C—H⋯Br intra­molecular inter­action is observed. In the crystal structure, mol­ecules are linked into a chain along [101] by inter­molecular C—H⋯O hydrogen bonds. A short inter­molecular Br⋯O contact [3.063 (2) Å] is observed.

Related literature

For background on the piperidine ring system, see: O'Hagan (2000[O'Hagan, D. (2000). Nat. Prod. Rep. 17, 435-446.]); Pinder (1992[Pinder, A. R. (1992). Nat. Prod. Rep. 9, 491-504.]). For information on the aryl­piperidine scaffold, see: Horton et al. (2003[Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893-930.]). For piperidone derivatives, see: Baluja et al. (1964[Baluja, G., Municio, A. M. & Vega, S. (1964). Chem. Ind. pp. 2053-2054.]); Mutus et al. (1989[Mutus, B., Wagner, J. D., Talpas, C. J., Dimmock, J. R., Phillips, O. A. & Reid, R. S. (1989). Anal. Biochem. 177, 237-243.]). For the biological activities of compounds possessing an amide bond linkage, see: Priya et al. (2007[Priya, B. S., Anil Kumar, C., Nanjunda Swamy, S., Basappa, S., Naveen, S., Shashidhara Prasad, J. & Rangappa, K. S. (2007). Bioorg. Med. Chem. Lett. 17, 2775-2780.]); Bylov et al. (1999[Bylov, I. E., Vasylev, M. V. & Bilokin, Y. V. (1999). Eur. J. Med. Chem. 34, 997-1001.]); Dollery (1999[Dollery, C. (1999). Therapeutic Drugs. Edinburgh, Scotland: Churchill Livingstone.]). For the activivities of chloro­acetyl and heterocyclicacetyl derivatives of variously functionalized 2,6-diaryl­piperidin-4-ones, see: Aridoss et al. (2007a[Aridoss, G., Balasubramanian, S., Parthiban, P., Ramachandran, R. & Kabilan, S. (2007a). Med. Chem. Res. 16, 188-204.],b[Aridoss, G., Balasubramanian, S., Parthiban, P. & Kabilan, S. (2007b). Eur. J. Med. Chem. 42, 851-860.]; 2008a[Aridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2008a). Eur. J. Med. Chem. 10, doi:10.1016/j.ejmech.2008.03.031.]). For a related structure, see: Aridoss et al. (2008b[Aridoss, G., Amirthaganesan, S., Kim, M. S., Cho, B. G., Lim, K. T. & Jeong, Y. T. (2008b). Arkivoc, XV, 133-158.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C23H26BrNO4

  • Mr = 460.36

  • Monoclinic, C c

  • a = 12.9487 (9) Å

  • b = 25.2882 (18) Å

  • c = 8.9701 (6) Å

  • β = 132.930 (1)°

  • V = 2150.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.94 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.16 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.594, Tmax = 0.747

  • 13660 measured reflections

  • 5139 independent reflections

  • 3748 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.098

  • S = 1.02

  • 5139 reflections

  • 266 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1651 Friedel pairs

  • Flack parameter: 0.004 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Br1 0.98 2.82 3.523 (3) 129
C20—H20C⋯O1i 0.96 2.60 3.357 (7) 136
Symmetry code: (i) [x-1, -y+1, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The piperidine ring system is ubiquitous structural component of naturally occurring alkaloid and pharmaceuticals (O'Hagan, 2000; Pinder, 1992). Its biological properties are highly dependent on the type and location of substituents on the heterocyclic ring. The arylpiperidine scaffold is a key element involved in binding to a variety of receptors and therefore can be described as a privileged structure (Horton et al., 2003). Similarly, piperidone derivatives have also received wide interest among chemists and biologists due to their envisaged mode of interaction with cellular thiols, with modest or no affinity for the hydroxy and amine groups found in nucleic acids (Baluja et al., 1964; Mutus et al., 1989). Generally, compounds possessing an amide bond linkage have a wide range of biological activities such as antimicrobial (Priya et al., 2007), anti-inflammatory (Bylov et al., 1999), antiviral, antimalarial and general anesthetics (Dollery, 1999). Recently, we have explored the antimicrobial, analgesic and antipyretic activities associated with chloroacetyl and heterocyclicacetyl derivatives of variously functionalized 2,6-diarylpiperidin-4-ones besides the change in piperidone ring conformation (Aridoss et al., 2007a,b, 2008a). Thus, it has spurred our interest to synthesize diversely substituted 2,6-diarylpiperidin-4-ones and their derivatives. In order to establish the change in molecular conformation of piperidone ring upon bromoacetylation, the present investigation was made and confirmed by X-ray diffraction study.

The bond lengths and angles in the title molecule (Fig.1) are comparable to those observed in a related structure (Aridoss et al., 2008b). The sum of the angles at N1 (359.0 (6)°) is in accordance with sp2 hybridization. The decrease in the N1—C22 bond length (1.368 (3) Å) when compared to C1—N1 (1.481 (3) Å) and C5—N1 (1.481 (3) Å) lengths indicates the effective conjugation between lone pair of nitrogen with carbonyl group. The N-COCH2 group is coplanar as confirmed by the torsion angles C1—N1—C22—C23 of -4.0 (4)° and C5—N1—C22—O1 of -172.4 (2)°. The dihedral angle between the two benzene rings is 70.9 (1)°. The C10—C9—O3—C20 (6.3 (5)°) and C16—C15—O4—C21 (16.4 (4)°) torsion angles indicate that the methoxy groups almost lie in the plane of the phenyl rings C6—C11 and C12—C17, respectively, to which they are attached.

The piperidinone ring adopts a boat conformation with the puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) being q2 = 0.673 (4) Å, q3 = -0.051 (4) Å, QT = 0.675 (4)Å, θ = 94.3 (3)° and ΔCs(C2) = 10.0 (3)°. A weak C—H···Br intramolecular interaction is observed in the molecular structure. In the crystal packing, the molecules are linked into a chain along [101] by intermolecular C—H···O hydrogen bonds (Fig. 2). A short intermolecular Br1···O4 (1+x, y, 1+z) contact of 3.063 (2) Å has been observed.

Related literature top

For background on the piperidine ring system, see: O'Hagan (2000); Pinder (1992). For information on the arylpiperidine scaffold, see: Horton et al. (2003). For piperidone derivatives, see:

Baluja et al. (1964); Mutus et al. (1989). For the biological activities of compounds possessing an amide bond linkage, see:

Priya et al. (2007); Bylov et al. (1999); Dollery (1999). For the activivities of chloroacetyl and heterocyclicacetyl derivatives of variously functionalized 2,6-diarylpiperidin-4-ones, see:

Aridoss et al. (2007a,b; 2008a). For a related structure, see: Aridoss et al. (2008b). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

The title compound was obtained by adopting our earlier method (Aridoss et al., 2007a). To a well stirred solution of 3,5-dimethyl-2,6-bis(p-methoxyphenyl)piperidin-4-one (1 equiv.) and triethylamine (1 equiv.) in freshly distilled benzene, bromoacetyl chloride (1 equiv.) in benzene was added in drop wise through the addition funnel for about half an hour. Stirring was continued until the completion of reaction. Later, it was poured into water and extracted with DCM. The combined DCM extracts was then washed well with 3% sodium bicarbonate solution and dried over anhydrous sodium sulfate. This upon evaporation and subsequent recrystallization in distilled ethanol furnished the diffraction-quality crystals of the title compound.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with aromatic C-H = 0.93 Å, methine C-H = 0.98 Å, methylene C-H = 0.97 Å and methyl C-H = 0.96 Å. The Uiso values were set at 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
1-Bromoacetyl-2,6-bis(4-methoxyphenyl)-3,5-dimethylpiperidin-4-one top
Crystal data top
C23H26BrNO4F(000) = 952
Mr = 460.36Dx = 1.422 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 5872 reflections
a = 12.9487 (9) Åθ = 1.6–31.2°
b = 25.2882 (18) ŵ = 1.94 mm1
c = 8.9701 (6) ÅT = 293 K
β = 132.930 (1)°Prism, colourless
V = 2150.6 (3) Å30.30 × 0.20 × 0.16 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5139 independent reflections
Radiation source: fine-focus sealed tube3748 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and ϕ scansθmax = 31.2°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1118
Tmin = 0.594, Tmax = 0.747k = 3634
13660 measured reflectionsl = 136
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0517P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5139 reflectionsΔρmax = 0.42 e Å3
266 parametersΔρmin = 0.22 e Å3
2 restraintsAbsolute structure: Flack (1983), 1651 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.004 (7)
Crystal data top
C23H26BrNO4V = 2150.6 (3) Å3
Mr = 460.36Z = 4
Monoclinic, CcMo Kα radiation
a = 12.9487 (9) ŵ = 1.94 mm1
b = 25.2882 (18) ÅT = 293 K
c = 8.9701 (6) Å0.30 × 0.20 × 0.16 mm
β = 132.930 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5139 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3748 reflections with I > 2σ(I)
Tmin = 0.594, Tmax = 0.747Rint = 0.023
13660 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.098Δρmax = 0.42 e Å3
S = 1.02Δρmin = 0.22 e Å3
5139 reflectionsAbsolute structure: Flack (1983), 1651 Friedel pairs
266 parametersAbsolute structure parameter: 0.004 (7)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.66353 (4)0.384464 (14)1.04369 (5)0.06848 (12)
O10.5273 (2)0.48401 (7)0.6690 (3)0.0532 (5)
O20.6012 (3)0.29025 (9)0.3780 (5)0.0771 (8)
O30.0290 (3)0.45775 (10)0.4164 (4)0.0731 (7)
O40.0766 (2)0.31531 (9)0.3554 (3)0.0559 (5)
N10.4607 (2)0.40235 (8)0.5255 (3)0.0345 (4)
C10.4291 (3)0.34626 (9)0.5282 (4)0.0364 (5)
H10.50690.33260.66540.044*
C20.4229 (3)0.31286 (10)0.3780 (4)0.0416 (5)
H20.33560.32230.24010.050*
C30.5436 (3)0.32436 (11)0.3917 (4)0.0461 (6)
C40.5906 (4)0.38105 (11)0.4261 (6)0.0446 (7)
H40.60040.39010.33000.054*
C50.4839 (3)0.41869 (9)0.3917 (4)0.0381 (5)
H50.53060.45320.44240.046*
C60.3462 (3)0.42782 (9)0.1749 (4)0.0393 (5)
C70.3089 (3)0.40271 (11)0.0059 (4)0.0486 (6)
H70.36990.37800.02410.058*
C80.1835 (4)0.41381 (12)0.1874 (5)0.0561 (7)
H80.16000.39610.29790.067*
C90.0921 (3)0.45079 (11)0.2196 (4)0.0513 (7)
C100.1278 (3)0.47738 (12)0.0556 (5)0.0516 (7)
H100.06820.50310.07520.062*
C110.2541 (3)0.46518 (10)0.1394 (4)0.0455 (6)
H110.27720.48280.24970.055*
C120.2944 (3)0.33861 (9)0.4838 (4)0.0364 (5)
C130.1691 (3)0.36284 (11)0.3213 (4)0.0432 (6)
H130.16680.38530.23710.052*
C140.0474 (3)0.35416 (10)0.2822 (4)0.0447 (6)
H140.03600.37090.17250.054*
C150.0489 (3)0.32085 (10)0.4052 (4)0.0408 (5)
C160.1720 (4)0.29517 (10)0.5642 (5)0.0492 (6)
H160.17320.27170.64530.059*
C170.2921 (3)0.30430 (11)0.6021 (5)0.0488 (6)
H170.37470.28700.71050.059*
C180.4147 (5)0.25375 (12)0.4064 (7)0.0680 (9)
H18A0.49450.24390.54450.102*
H18B0.41510.23370.31590.102*
H18C0.32940.24660.37650.102*
C190.7355 (4)0.38566 (13)0.6430 (7)0.0598 (10)
H19A0.79950.36100.66070.090*
H19B0.72690.37790.73890.090*
H19C0.77080.42100.66530.090*
C200.1223 (5)0.49859 (18)0.4644 (7)0.0873 (12)
H20A0.07710.53220.43340.131*
H20B0.14700.49410.38570.131*
H20C0.20600.49710.60680.131*
C210.0739 (4)0.29285 (15)0.5013 (6)0.0656 (9)
H21A0.00470.31070.62910.098*
H21B0.05010.25600.51740.098*
H21C0.16500.29650.45710.098*
C220.4945 (3)0.43860 (10)0.6661 (4)0.0384 (5)
C230.4904 (3)0.42170 (11)0.8232 (4)0.0434 (6)
H23A0.41000.39870.76080.052*
H23B0.48020.45250.87660.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.05974 (18)0.0974 (3)0.04260 (14)0.01855 (19)0.03263 (13)0.01594 (17)
O10.0652 (13)0.0408 (10)0.0590 (12)0.0060 (9)0.0444 (11)0.0084 (9)
O20.0764 (17)0.0581 (13)0.123 (2)0.0063 (11)0.0782 (18)0.0271 (13)
O30.0637 (15)0.0801 (15)0.0478 (12)0.0042 (12)0.0271 (12)0.0110 (11)
O40.0489 (12)0.0669 (13)0.0613 (12)0.0003 (9)0.0412 (11)0.0063 (10)
N10.0395 (11)0.0334 (9)0.0376 (10)0.0026 (8)0.0290 (9)0.0018 (8)
C10.0388 (12)0.0350 (12)0.0381 (12)0.0030 (10)0.0272 (11)0.0031 (9)
C20.0473 (14)0.0346 (12)0.0520 (14)0.0020 (10)0.0374 (13)0.0035 (11)
C30.0457 (15)0.0475 (15)0.0512 (14)0.0007 (12)0.0354 (13)0.0075 (12)
C40.0461 (19)0.0498 (16)0.0493 (19)0.0023 (11)0.0370 (17)0.0005 (12)
C50.0482 (15)0.0341 (12)0.0449 (13)0.0028 (10)0.0369 (13)0.0007 (10)
C60.0513 (15)0.0337 (12)0.0431 (12)0.0033 (10)0.0362 (12)0.0015 (9)
C70.0624 (18)0.0442 (13)0.0469 (15)0.0056 (12)0.0402 (15)0.0020 (11)
C80.073 (2)0.0501 (16)0.0428 (14)0.0030 (15)0.0384 (16)0.0000 (12)
C90.0532 (17)0.0517 (16)0.0436 (14)0.0031 (13)0.0308 (14)0.0089 (12)
C100.0560 (18)0.0474 (15)0.0543 (16)0.0074 (13)0.0387 (15)0.0074 (12)
C110.0581 (17)0.0417 (14)0.0470 (14)0.0004 (12)0.0399 (14)0.0006 (11)
C120.0423 (14)0.0329 (11)0.0405 (12)0.0008 (10)0.0307 (11)0.0005 (9)
C130.0485 (15)0.0404 (13)0.0439 (13)0.0005 (11)0.0327 (13)0.0079 (11)
C140.0392 (14)0.0450 (16)0.0425 (13)0.0041 (11)0.0250 (12)0.0089 (11)
C150.0422 (14)0.0377 (13)0.0486 (14)0.0060 (11)0.0333 (13)0.0068 (11)
C160.0549 (16)0.0480 (14)0.0563 (17)0.0030 (14)0.0424 (15)0.0127 (13)
C170.0492 (16)0.0482 (15)0.0551 (16)0.0106 (12)0.0379 (15)0.0188 (13)
C180.099 (3)0.0367 (15)0.105 (3)0.0042 (15)0.084 (3)0.0081 (16)
C190.043 (2)0.060 (2)0.068 (3)0.0046 (13)0.035 (2)0.0127 (15)
C200.076 (3)0.091 (3)0.078 (3)0.021 (2)0.046 (2)0.030 (2)
C210.066 (2)0.087 (2)0.065 (2)0.0187 (17)0.0529 (19)0.0098 (17)
C220.0332 (12)0.0415 (13)0.0373 (12)0.0018 (10)0.0227 (11)0.0022 (10)
C230.0412 (14)0.0541 (16)0.0376 (12)0.0032 (11)0.0278 (12)0.0022 (11)
Geometric parameters (Å, º) top
Br1—C231.945 (3)C10—C111.390 (4)
O1—C221.219 (3)C10—H100.93
O2—C31.201 (3)C11—H110.93
O3—C91.354 (4)C12—C131.382 (4)
O3—C201.415 (5)C12—C171.387 (4)
O4—C151.367 (3)C13—C141.379 (4)
O4—C211.406 (4)C13—H130.93
N1—C221.368 (3)C14—C151.377 (4)
N1—C51.481 (3)C14—H140.93
N1—C11.481 (3)C15—C161.378 (4)
C1—C121.513 (3)C16—C171.366 (5)
C1—C21.546 (3)C16—H160.93
C1—H10.9800C17—H170.93
C2—C31.509 (4)C18—H18A0.96
C2—C181.532 (4)C18—H18B0.96
C2—H20.98C18—H18C0.96
C3—C41.505 (4)C19—H19A0.96
C4—C51.526 (4)C19—H19B0.96
C4—C191.532 (4)C19—H19C0.96
C4—H40.98C20—H20A0.96
C5—C61.514 (4)C20—H20B0.96
C5—H50.98C20—H20C0.96
C6—C111.378 (4)C21—H21A0.96
C6—C71.392 (4)C21—H21B0.96
C7—C81.374 (4)C21—H21C0.96
C7—H70.93C22—C231.507 (4)
C8—C91.375 (5)C23—H23A0.97
C8—H80.93C23—H23B0.97
C9—C101.380 (4)
C9—O3—C20118.8 (3)C13—C12—C1122.4 (2)
C15—O4—C21117.8 (2)C17—C12—C1120.0 (2)
C22—N1—C5116.5 (2)C14—C13—C12121.0 (2)
C22—N1—C1123.0 (2)C14—C13—H13119.5
C5—N1—C1119.5 (2)C12—C13—H13119.5
N1—C1—C12113.59 (19)C15—C14—C13120.2 (2)
N1—C1—C2111.07 (19)C15—C14—H14119.9
C12—C1—C2109.6 (2)C13—C14—H14119.9
N1—C1—H1107.5O4—C15—C14115.8 (2)
C12—C1—H1107.5O4—C15—C16124.7 (2)
C2—C1—H1107.5C14—C15—C16119.5 (3)
C3—C2—C18111.1 (2)C17—C16—C15119.7 (3)
C3—C2—C1112.8 (2)C17—C16—H16120.1
C18—C2—C1110.9 (2)C15—C16—H16120.1
C3—C2—H2107.3C16—C17—C12122.0 (3)
C18—C2—H2107.3C16—C17—H17119.0
C1—C2—H2107.3C12—C17—H17119.0
O2—C3—C4120.8 (3)C2—C18—H18A109.5
O2—C3—C2122.3 (3)C2—C18—H18B109.5
C4—C3—C2116.9 (2)H18A—C18—H18B109.5
C3—C4—C5111.6 (3)C2—C18—H18C109.5
C3—C4—C19107.9 (3)H18A—C18—H18C109.5
C5—C4—C19111.5 (2)H18B—C18—H18C109.5
C3—C4—H4108.6C4—C19—H19A109.5
C5—C4—H4108.6C4—C19—H19B109.5
C19—C4—H4108.6H19A—C19—H19B109.5
N1—C5—C6111.9 (2)C4—C19—H19C109.5
N1—C5—C4108.5 (2)H19A—C19—H19C109.5
C6—C5—C4117.8 (2)H19B—C19—H19C109.5
N1—C5—H5105.9O3—C20—H20A109.5
C6—C5—H5105.9O3—C20—H20B109.5
C4—C5—H5105.9H20A—C20—H20B109.5
C11—C6—C7117.2 (3)O3—C20—H20C109.5
C11—C6—C5118.5 (2)H20A—C20—H20C109.5
C7—C6—C5124.2 (2)H20B—C20—H20C109.5
C8—C7—C6121.1 (3)O4—C21—H21A109.5
C8—C7—H7119.4O4—C21—H21B109.5
C6—C7—H7119.4H21A—C21—H21B109.5
C7—C8—C9120.8 (3)O4—C21—H21C109.5
C7—C8—H8119.6H21A—C21—H21C109.5
C9—C8—H8119.6H21B—C21—H21C109.5
O3—C9—C8115.4 (3)O1—C22—N1122.6 (2)
O3—C9—C10125.2 (3)O1—C22—C23118.8 (2)
C8—C9—C10119.4 (3)N1—C22—C23118.6 (2)
C9—C10—C11119.1 (3)C22—C23—Br1109.78 (17)
C9—C10—H10120.5C22—C23—H23A109.7
C11—C10—H10120.5Br1—C23—H23A109.7
C6—C11—C10122.3 (3)C22—C23—H23B109.7
C6—C11—H11118.9Br1—C23—H23B109.7
C10—C11—H11118.9H23A—C23—H23B108.2
C13—C12—C17117.5 (2)
C22—N1—C1—C1266.9 (3)C20—O3—C9—C8174.0 (3)
C5—N1—C1—C12125.1 (2)C20—O3—C9—C106.3 (5)
C22—N1—C1—C2169.1 (2)C7—C8—C9—O3179.1 (3)
C5—N1—C1—C21.1 (3)C7—C8—C9—C100.6 (4)
N1—C1—C2—C345.3 (3)O3—C9—C10—C11178.2 (3)
C12—C1—C2—C3171.6 (2)C8—C9—C10—C111.6 (4)
N1—C1—C2—C18170.6 (2)C7—C6—C11—C100.8 (4)
C12—C1—C2—C1863.1 (3)C5—C6—C11—C10177.7 (3)
C18—C2—C3—O216.2 (4)C9—C10—C11—C60.9 (4)
C1—C2—C3—O2141.4 (3)N1—C1—C12—C1348.1 (3)
C18—C2—C3—C4163.2 (3)C2—C1—C12—C1376.8 (3)
C1—C2—C3—C438.0 (3)N1—C1—C12—C17135.1 (2)
O2—C3—C4—C5167.3 (3)C2—C1—C12—C17100.1 (3)
C2—C3—C4—C513.3 (4)C17—C12—C13—C141.7 (4)
O2—C3—C4—C1969.9 (4)C1—C12—C13—C14178.6 (2)
C2—C3—C4—C19109.5 (3)C12—C13—C14—C150.2 (4)
C22—N1—C5—C6109.2 (2)C21—O4—C15—C14164.6 (3)
C1—N1—C5—C682.0 (3)C21—O4—C15—C1616.4 (4)
C22—N1—C5—C4119.1 (2)C13—C14—C15—O4179.3 (2)
C1—N1—C5—C449.7 (3)C13—C14—C15—C161.7 (4)
C3—C4—C5—N155.9 (3)O4—C15—C16—C17179.0 (3)
C19—C4—C5—N164.8 (3)C14—C15—C16—C172.1 (4)
C3—C4—C5—C672.5 (3)C15—C16—C17—C120.6 (5)
C19—C4—C5—C6166.8 (2)C13—C12—C17—C161.3 (4)
N1—C5—C6—C1158.9 (3)C1—C12—C17—C16178.3 (3)
C4—C5—C6—C11174.3 (2)C5—N1—C22—O17.8 (4)
N1—C5—C6—C7124.5 (3)C1—N1—C22—O1176.2 (2)
C4—C5—C6—C72.3 (4)C5—N1—C22—C23172.4 (2)
C11—C6—C7—C81.8 (4)C1—N1—C22—C234.0 (4)
C5—C6—C7—C8178.4 (3)O1—C22—C23—Br198.9 (3)
C6—C7—C8—C91.1 (5)N1—C22—C23—Br181.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br10.982.823.523 (3)129
C20—H20C···O1i0.962.603.357 (7)136
Symmetry code: (i) x1, y+1, z3/2.

Experimental details

Crystal data
Chemical formulaC23H26BrNO4
Mr460.36
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)12.9487 (9), 25.2882 (18), 8.9701 (6)
β (°) 132.930 (1)
V3)2150.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.94
Crystal size (mm)0.30 × 0.20 × 0.16
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.594, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
13660, 5139, 3748
Rint0.023
(sin θ/λ)max1)0.729
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.098, 1.02
No. of reflections5139
No. of parameters266
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.22
Absolute structureFlack (1983), 1651 Friedel pairs
Absolute structure parameter0.004 (7)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br10.982.823.523 (3)129
C20—H20C···O1i0.962.603.357 (7)136
Symmetry code: (i) x1, y+1, z3/2.
 

Acknowledgements

GA and YTJ acknowledge support provided by the second stage of the BK21 program, Republic of Korea. Financial support from the University Grants Commission (UGC–SAP) and the Department of Science & Technology (DST–FIST), Government of India, are acknowledged by DV for providing facilities to the department.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAridoss, G., Amirthaganesan, S., Kim, M. S., Cho, B. G., Lim, K. T. & Jeong, Y. T. (2008b). Arkivoc, XV, 133–158.  CrossRef Google Scholar
First citationAridoss, G., Balasubramanian, S., Parthiban, P. & Kabilan, S. (2007b). Eur. J. Med. Chem. 42, 851–860.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAridoss, G., Balasubramanian, S., Parthiban, P., Ramachandran, R. & Kabilan, S. (2007a). Med. Chem. Res. 16, 188–204.  Web of Science CrossRef CAS Google Scholar
First citationAridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2008a). Eur. J. Med. Chem. 10, doi:10.1016/j.ejmech.2008.03.031.  Google Scholar
First citationBaluja, G., Municio, A. M. & Vega, S. (1964). Chem. Ind. pp. 2053–2054.  Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBylov, I. E., Vasylev, M. V. & Bilokin, Y. V. (1999). Eur. J. Med. Chem. 34, 997–1001.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDollery, C. (1999). Therapeutic Drugs. Edinburgh, Scotland: Churchill Livingstone.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHorton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893–930.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMutus, B., Wagner, J. D., Talpas, C. J., Dimmock, J. R., Phillips, O. A. & Reid, R. S. (1989). Anal. Biochem. 177, 237–243.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationO'Hagan, D. (2000). Nat. Prod. Rep. 17, 435–446.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPinder, A. R. (1992). Nat. Prod. Rep. 9, 491–504.  CrossRef CAS Web of Science Google Scholar
First citationPriya, B. S., Anil Kumar, C., Nanjunda Swamy, S., Basappa, S., Naveen, S., Shashidhara Prasad, J. & Rangappa, K. S. (2007). Bioorg. Med. Chem. Lett. 17, 2775–2780.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o2009-o2010
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds