metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1298-m1299

Hemipiperazinediium bis­­(pyridine-2,6-di­carboxyl­ato-κ3O,N,O′)gallate(III) pyridine-2,6-di­carboxylic acid dihydrate

aFaculty of Chemistry, Tarbiat Moallem University, Tehran, Iran
*Correspondence e-mail: m_rafizadeh6@yahoo.com

(Received 25 August 2008; accepted 11 September 2008; online 20 September 2008)

The asymmetric unit of the title compound, (C4H12N2)0.5[Ga(pydc)2]·pydcH2·2H2O, where pydcH2 is pyridine-2,6-dicarboxylic acid, C7H5NO4, contains one half of a centrosymmetric piperazinediium dication, one anion, one uncoord­inated pydcH2 mol­ecule and two uncoordinated water mol­ecules, one of which is disordered over two sites in a 1:1 ratio. In the anion, the GaIII ion is coordinated by four O atoms [Ga—O = 1.9706 (16)–2.0494 (15) Å] and two N atoms [Ga—N = 1.9660 (18) and 1.9709 (17) Å] from two pydc ligands in a distorted octa­hedral geometry. The crystal structure exhibits inter­molecular O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds and ππ inter­actions [centroid–centroid distances of 3.5359 (13) and 3.6550 (14) Å].

Related literature

For self-assembling systems involving pydcH2, see: Aghabozorg et al. (2006a[Aghabozorg, H., Ghadermazi, M., Manteghi, F. & Nakhjavan, B. (2006a). Z. Anorg. Allg. Chem. 632, 2058-2064.],b[Aghabozorg, H., Ghadermazi, M., Sheshmani, S. & Nakhjavan, B. (2006b). Acta Cryst. E62, m2371-m2373.]). For related complexes of the pyridine-2,6-dicarboxyl­ate ligand with transition metals, see: Rafizadeh et al. (2005[Rafizadeh, M., Amani, V. & Neumüller, B. (2005). Z. Anorg. Allg. Chem. 631, 1753-1755.], 2006[Rafizadeh, M., Mehrabi, B. & Amani, V. (2006). Acta Cryst. E62, m1332-m1334.]); Rafizadeh & Amani (2006[Rafizadeh, M. & Amani, V. (2006). Acta Cryst. E62, m90-m91.]); Aghabozorg et al. (2007[Aghabozorg, H., Nemati, A., Derikvand, Z. & Ghadermazi, M. (2007). Acta Cryst. E63, m2921.], 2008[Aghabozorg, H., Nemati, A., Derikvand, Z. & Ghadermazi, M. (2008). Acta Cryst. E64, m374.]). For details of the synthesis, see: Sheshmani et al. (2006[Sheshmani, S., Ghadermazi, M. & Aghabozorg, H. (2006). Acta Cryst. E62, o3620-o3622.]).

[Scheme 1]

Experimental

Crystal data
  • (C4H12N2)0.5[Ga(C7H3NO4)2·C7H5NO4·2H2O

  • Mr = 647.16

  • Triclinic, [P \overline 1]

  • a = 8.6434 (4) Å

  • b = 11.8582 (5) Å

  • c = 13.7907 (6) Å

  • α = 65.7151 (10)°

  • β = 80.0391 (10)°

  • γ = 86.9150 (11)°

  • V = 1268.74 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.17 mm−1

  • T = 120 (2) K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.749, Tmax = 0.807

  • 13018 measured reflections

  • 6067 independent reflections

  • 5263 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.099

  • S = 1.00

  • 6067 reflections

  • 382 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯O13i 0.92 1.84 2.754 (3) 169
N4—H4C⋯O14 0.92 1.94 2.818 (4) 160
N4—H4C⋯O14′ 0.92 1.85 2.681 (4) 150
O9—H9O⋯O8ii 0.89 1.90 2.710 (2) 150
O11—H11O⋯O8ii 0.87 1.91 2.725 (2) 155
O13—H13A⋯O4 0.97 1.88 2.823 (3) 163
O13—H13B⋯O2iii 0.92 1.84 2.765 (3) 175
O14—H14A⋯O10 0.91 1.95 2.798 (5) 153
O14—H14B⋯O1iv 0.96 2.15 2.974 (5) 143
N4—H4C⋯O12ii 0.92 2.50 2.863 (3) 104
O9—H9O⋯N3 0.89 2.20 2.678 (3) 113
O11—H11O⋯N3 0.87 2.22 2.690 (2) 114
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) x, y-1, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT-Plus. Bruker AXS, Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SMART and SAINT-Plus. Bruker AXS, Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In continuation of our study of self-assembling systems (pipzH2)32+[In(pydc)3]23-.12H2O, (pipzH2)2+[Tl2(pydc)2Cl4(H2O)2]2-.4H2O and some others (Aghabozorg et al., 2006a,b), we present here the crystal structure of the title compound, (I).

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related complexes of pyridine-2,6-dicarboxylate ligand with transition metals (Rafizadeh et al., 2005; Rafizadeh, Mehrabi & Amani, 2006; Rafizadeh & Amani, 2006; Aghabozorg et al., 2007, 2008). In the anion, the angles O1—Ga—O3 [158.69 (6)°], O5—Ga—O7 [158.65 (6)°] and N1—Ga—N2 [171.11 (7)°] indicate that the coordination environment around GaIII ion is a distorted octahedron.

In the crystal, the ππ interactions (Table 1) and extensive three-dimensional network of intermolecular O—H···O, O—H···N and N—H···O hydrogen bonds (Table 2) contribute to the crystal packing stability.

Related literature top

For self-assembling systems involving pydcH2, see: Aghabozorg et al. (2006a,b).For related complexes of the pyridine-2,6-dicarboxylate ligand with transition metals, see: Rafizadeh et al. (2005); Rafizadeh & Amani (2006); Rafizadeh, Mehrabi & Amani (2006); Aghabozorg et al., 2007, 2008). For details of the synthesis, see: Sheshmani et al., 2006).

Experimental top

The proton transfer compound (pipzH2)(pydcH)2.3H2O, was prepared by the reaction of pyridine-2,6-dicarboxylic acid, pydcH2, with piperazine, pipz, (Sheshmani et al., 2006). The reaction between Ga(NO3)3.8H2O (200.0 mg, 0.5 mmol) in water (25 ml) and the proton transfer compound (pipzH2 )(pydcH)2.3H2O (253.0 mg, 1.0 mmol) in water (25 ml), in a 1:2 molar ratio was carried by slow evaporation of the solvent at room temperature.

Refinement top

The H atoms of the –OH and –NH2 groups as well as the water molecule were located in the difference Fourier map and refined in rigid model with fixed thermal (Uiso(H) = 1.2Ueq(O or N) for the –OH and –NH2 groups and Uiso(H) = 1.5Ueq(O) for the water molecule) parameters. The H(C) atoms were placed in calculated positions and refined in riding model with fixed thermal parameters (Uiso(H) = 1.2Ueq(C)). The Ueq(O, N or C) are the equivalent thermal parameters of the oxygen, nitrogen and carbon atoms, respectively, to which corresponding H atoms are bonded. One water molecule (O14) was refined as disordered between two positions with the occupancies fixed to 0.5 each.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus(Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atomic numbering, 50% probability displacement ellipsoids and disordered water molecule. Hydrogen bonds are shown as dashed lines.
Hemipiperazinediium bis(pyridine-2,6-dicarboxylato-κ3O,N,O')gallate(III) pyridine-2,6-dicarboxylic acid dihydrate top
Crystal data top
(C4H12N2)0.5[Ga(C7H3NO4)2]·C7H5NO4·2H2OZ = 2
Mr = 647.16F(000) = 660
Triclinic, P1Dx = 1.694 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6434 (4) ÅCell parameters from 6643 reflections
b = 11.8582 (5) Åθ = 2.4–29.9°
c = 13.7907 (6) ŵ = 1.17 mm1
α = 65.7151 (10)°T = 120 K
β = 80.0391 (10)°Prism, colourless
γ = 86.9150 (11)°0.25 × 0.20 × 0.18 mm
V = 1268.74 (10) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
6067 independent reflections
Radiation source: fine-focus sealed tube5263 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 28.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998a)
h = 1111
Tmin = 0.749, Tmax = 0.807k = 1515
13018 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: mixed
wR(F2) = 0.099H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.043P)2 + 2.120P]
where P = (Fo2 + 2Fc2)/3
6067 reflections(Δ/σ)max = 0.001
382 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.84 e Å3
Crystal data top
(C4H12N2)0.5[Ga(C7H3NO4)2]·C7H5NO4·2H2Oγ = 86.9150 (11)°
Mr = 647.16V = 1268.74 (10) Å3
Triclinic, P1Z = 2
a = 8.6434 (4) ÅMo Kα radiation
b = 11.8582 (5) ŵ = 1.17 mm1
c = 13.7907 (6) ÅT = 120 K
α = 65.7151 (10)°0.25 × 0.20 × 0.18 mm
β = 80.0391 (10)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
6067 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998a)
5263 reflections with I > 2σ(I)
Tmin = 0.749, Tmax = 0.807Rint = 0.024
13018 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.00Δρmax = 0.86 e Å3
6067 reflectionsΔρmin = 0.84 e Å3
382 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ga10.69834 (3)0.81449 (2)0.236980 (18)0.01489 (8)
O10.49972 (19)0.87108 (15)0.30323 (13)0.0197 (3)
O20.3151 (2)0.80985 (17)0.45133 (15)0.0282 (4)
O30.89040 (18)0.71384 (14)0.22836 (12)0.0172 (3)
O41.00566 (19)0.53668 (15)0.31985 (13)0.0221 (3)
O50.82240 (19)0.95577 (14)0.22476 (13)0.0196 (3)
O60.9372 (2)1.13613 (15)0.10526 (14)0.0247 (4)
O70.56973 (18)0.71043 (14)0.19088 (12)0.0175 (3)
O80.49004 (19)0.70052 (14)0.04916 (13)0.0197 (3)
N10.6764 (2)0.69072 (16)0.38696 (14)0.0149 (3)
N20.7106 (2)0.91756 (16)0.08145 (14)0.0136 (3)
C10.5515 (3)0.6960 (2)0.45659 (17)0.0167 (4)
C20.5309 (3)0.6093 (2)0.56250 (18)0.0210 (4)
H2A0.44440.61310.61390.025*
C30.6416 (3)0.5158 (2)0.59122 (18)0.0219 (5)
H3A0.63100.45550.66350.026*
C40.7666 (3)0.5101 (2)0.51542 (17)0.0192 (4)
H4A0.84000.44520.53420.023*
C50.7816 (3)0.60203 (19)0.41114 (17)0.0156 (4)
C60.4444 (3)0.8002 (2)0.40167 (18)0.0191 (4)
C70.9052 (3)0.6166 (2)0.31338 (17)0.0166 (4)
C80.7917 (2)1.02317 (19)0.04205 (17)0.0153 (4)
C90.8099 (3)1.0982 (2)0.06768 (18)0.0186 (4)
H9A0.86701.17450.09760.022*
C100.7412 (3)1.0574 (2)0.13246 (18)0.0203 (4)
H10A0.75161.10690.20770.024*
C110.6578 (3)0.9454 (2)0.08861 (17)0.0174 (4)
H11A0.61200.91740.13280.021*
C120.6438 (2)0.87575 (19)0.02216 (17)0.0147 (4)
C130.8575 (3)1.0439 (2)0.12937 (18)0.0172 (4)
C140.5601 (2)0.75183 (19)0.09115 (17)0.0151 (4)
O90.58636 (19)0.23498 (15)0.14907 (13)0.0210 (3)
H9O0.59600.26830.07730.025*
O100.6888 (2)0.25644 (16)0.27682 (13)0.0254 (4)
O110.6148 (2)0.53088 (15)0.19160 (13)0.0217 (3)
H11O0.60470.45920.13670.026*
O120.7671 (2)0.69899 (16)0.25682 (14)0.0280 (4)
N30.7038 (2)0.45536 (16)0.00267 (14)0.0157 (3)
C150.7399 (2)0.4193 (2)0.10158 (17)0.0167 (4)
C160.8334 (3)0.4892 (2)0.12957 (18)0.0195 (4)
H16A0.85640.46000.20070.023*
C170.8921 (3)0.6026 (2)0.05116 (19)0.0207 (4)
H17A0.95600.65290.06760.025*
C180.8560 (3)0.6413 (2)0.05174 (19)0.0192 (4)
H18A0.89500.71840.10720.023*
C190.7612 (2)0.56477 (19)0.07202 (17)0.0158 (4)
C200.6712 (3)0.2969 (2)0.18329 (18)0.0182 (4)
C210.7167 (3)0.6045 (2)0.18171 (18)0.0191 (4)
N40.1327 (2)0.08293 (17)0.44706 (15)0.0178 (4)
H4B0.09050.15660.44520.021*
H4C0.23650.09770.41520.021*
C220.1227 (3)0.0079 (2)0.56174 (17)0.0183 (4)
H22A0.17700.02680.60120.022*
H22B0.17600.08490.56440.022*
C230.0474 (3)0.0373 (2)0.38454 (17)0.0193 (4)
H23A0.09810.03800.38080.023*
H23B0.05250.10120.31000.023*
O130.9874 (2)0.28616 (16)0.46782 (16)0.0303 (4)
H13A0.99950.36530.40630.045*
H13B0.88440.25830.49390.045*
O140.4588 (4)0.0692 (4)0.3846 (3)0.0273 (6)0.50
H14B0.48380.03840.32970.041*0.50
O14'0.4459 (4)0.0981 (4)0.4270 (3)0.0273 (6)0.50
H14C0.47150.03210.48510.041*0.50
H14A0.52720.13220.37040.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ga10.01791 (13)0.01363 (12)0.01235 (12)0.00172 (8)0.00268 (8)0.00423 (9)
O10.0207 (8)0.0183 (7)0.0188 (8)0.0022 (6)0.0022 (6)0.0070 (6)
O20.0233 (9)0.0275 (9)0.0299 (9)0.0030 (7)0.0045 (7)0.0114 (8)
O30.0182 (7)0.0171 (7)0.0150 (7)0.0004 (6)0.0020 (6)0.0055 (6)
O40.0207 (8)0.0224 (8)0.0225 (8)0.0047 (6)0.0045 (6)0.0085 (7)
O50.0254 (8)0.0175 (7)0.0172 (7)0.0038 (6)0.0056 (6)0.0070 (6)
O60.0277 (9)0.0187 (8)0.0281 (9)0.0082 (7)0.0054 (7)0.0086 (7)
O70.0219 (8)0.0161 (7)0.0135 (7)0.0050 (6)0.0041 (6)0.0039 (6)
O80.0232 (8)0.0178 (7)0.0201 (8)0.0044 (6)0.0056 (6)0.0082 (6)
N10.0157 (8)0.0153 (8)0.0133 (8)0.0020 (7)0.0018 (6)0.0055 (7)
N20.0136 (8)0.0127 (8)0.0129 (8)0.0003 (6)0.0021 (6)0.0038 (6)
C10.0176 (10)0.0184 (10)0.0163 (10)0.0015 (8)0.0001 (8)0.0101 (8)
C20.0266 (12)0.0225 (11)0.0154 (10)0.0037 (9)0.0018 (8)0.0107 (9)
C30.0341 (13)0.0176 (10)0.0129 (10)0.0028 (9)0.0041 (9)0.0045 (8)
C40.0255 (11)0.0163 (10)0.0162 (10)0.0006 (8)0.0071 (8)0.0054 (8)
C50.0182 (10)0.0137 (9)0.0159 (10)0.0016 (8)0.0046 (8)0.0062 (8)
C60.0204 (11)0.0180 (10)0.0211 (10)0.0006 (8)0.0024 (8)0.0105 (8)
C70.0178 (10)0.0176 (10)0.0162 (10)0.0011 (8)0.0056 (8)0.0076 (8)
C80.0147 (9)0.0128 (9)0.0178 (10)0.0013 (7)0.0021 (8)0.0057 (8)
C90.0180 (10)0.0146 (10)0.0201 (10)0.0020 (8)0.0024 (8)0.0038 (8)
C100.0207 (11)0.0210 (11)0.0144 (10)0.0006 (8)0.0011 (8)0.0030 (8)
C110.0183 (10)0.0191 (10)0.0150 (10)0.0008 (8)0.0046 (8)0.0065 (8)
C120.0135 (9)0.0149 (9)0.0169 (10)0.0006 (7)0.0030 (7)0.0075 (8)
C130.0170 (10)0.0155 (10)0.0183 (10)0.0007 (8)0.0035 (8)0.0059 (8)
C140.0138 (9)0.0151 (9)0.0163 (9)0.0001 (7)0.0024 (7)0.0064 (8)
O90.0271 (8)0.0175 (7)0.0158 (7)0.0077 (6)0.0034 (6)0.0032 (6)
O100.0305 (9)0.0269 (9)0.0154 (8)0.0071 (7)0.0040 (7)0.0043 (7)
O110.0283 (9)0.0197 (8)0.0155 (7)0.0052 (6)0.0070 (6)0.0035 (6)
O120.0339 (10)0.0209 (8)0.0213 (8)0.0081 (7)0.0045 (7)0.0002 (7)
N30.0173 (9)0.0148 (8)0.0161 (8)0.0028 (7)0.0026 (7)0.0071 (7)
C150.0166 (10)0.0190 (10)0.0145 (9)0.0000 (8)0.0007 (8)0.0075 (8)
C160.0188 (10)0.0245 (11)0.0185 (10)0.0008 (8)0.0023 (8)0.0121 (9)
C170.0190 (10)0.0236 (11)0.0256 (11)0.0048 (8)0.0006 (9)0.0168 (9)
C180.0181 (10)0.0154 (10)0.0240 (11)0.0032 (8)0.0007 (8)0.0093 (9)
C190.0167 (10)0.0143 (9)0.0161 (9)0.0012 (8)0.0006 (8)0.0064 (8)
C200.0164 (10)0.0198 (10)0.0175 (10)0.0018 (8)0.0020 (8)0.0069 (8)
C210.0189 (10)0.0182 (10)0.0187 (10)0.0024 (8)0.0015 (8)0.0061 (8)
N40.0179 (9)0.0150 (8)0.0186 (9)0.0022 (7)0.0011 (7)0.0054 (7)
C220.0209 (11)0.0168 (10)0.0169 (10)0.0004 (8)0.0057 (8)0.0057 (8)
C230.0239 (11)0.0184 (10)0.0148 (10)0.0005 (8)0.0023 (8)0.0061 (8)
O130.0278 (9)0.0159 (8)0.0394 (10)0.0010 (7)0.0036 (8)0.0069 (7)
O140.0209 (11)0.0258 (15)0.0248 (18)0.0049 (10)0.0007 (13)0.0006 (11)
O14'0.0209 (11)0.0258 (15)0.0248 (18)0.0049 (10)0.0007 (13)0.0006 (11)
Geometric parameters (Å, º) top
Ga1—N11.9660 (18)C12—C141.521 (3)
Ga1—O51.9706 (16)O9—C201.328 (3)
Ga1—N21.9709 (17)O9—H9O0.8922
Ga1—O32.0073 (16)O10—C201.212 (3)
Ga1—O12.0175 (16)O11—C211.334 (3)
Ga1—O72.0494 (15)O11—H11O0.8710
O1—C61.288 (3)O12—C211.208 (3)
O2—C61.232 (3)N3—C191.336 (3)
O3—C71.282 (3)N3—C151.340 (3)
O4—C71.236 (3)C15—C161.390 (3)
O5—C131.296 (3)C15—C201.498 (3)
O6—C131.218 (3)C16—C171.387 (3)
O7—C141.272 (3)C16—H16A0.9500
O8—C141.234 (3)C17—C181.387 (3)
N1—C51.326 (3)C17—H17A0.9500
N1—C11.332 (3)C18—C191.393 (3)
N2—C81.326 (3)C18—H18A0.9500
N2—C121.333 (3)C19—C211.501 (3)
C1—C21.385 (3)N4—C231.492 (3)
C1—C61.519 (3)N4—C221.493 (3)
C2—C31.399 (3)N4—H4B0.9200
C2—H2A0.9500N4—H4C0.9200
C3—C41.387 (3)C22—C23i1.516 (3)
C3—H3A0.9500C22—H22A0.9900
C4—C51.391 (3)C22—H22B0.9900
C4—H4A0.9500C23—C22i1.516 (3)
C5—C71.523 (3)C23—H23A0.9900
C8—C91.390 (3)C23—H23B0.9900
C8—C131.526 (3)O13—H13A0.9680
C9—C101.398 (3)O13—H13B0.9241
C9—H9A0.9500O14—H14B0.9561
C10—C111.393 (3)O14—H14A0.9136
C10—H10A0.9500O14'—H14C0.9120
C11—C121.393 (3)O14'—H14A0.9201
C11—H11A0.9500
Cg1···Cg1ii3.5359 (13)Cg2···Cg2iii3.6550 (14)
N1—Ga1—O5108.00 (7)C10—C11—H11A121.1
N1—Ga1—N2171.11 (7)N2—C12—C11119.35 (19)
O5—Ga1—N280.53 (7)N2—C12—C14111.43 (18)
N1—Ga1—O379.40 (7)C11—C12—C14129.22 (19)
O5—Ga1—O392.73 (7)O6—C13—O5126.4 (2)
N2—Ga1—O398.00 (7)O6—C13—C8119.7 (2)
N1—Ga1—O179.32 (7)O5—C13—C8113.88 (18)
O5—Ga1—O192.66 (7)O8—C14—O7125.60 (19)
N2—Ga1—O1103.22 (7)O8—C14—C12119.95 (19)
O3—Ga1—O1158.69 (6)O7—C14—C12114.45 (18)
N1—Ga1—O793.34 (7)C20—O9—H9O111.7
O5—Ga1—O7158.65 (6)C21—O11—H11O111.4
N2—Ga1—O778.18 (7)C19—N3—C15117.42 (18)
O3—Ga1—O791.71 (6)N3—C15—C16123.5 (2)
O1—Ga1—O790.73 (7)N3—C15—C20115.68 (19)
C6—O1—Ga1115.97 (14)C16—C15—C20120.8 (2)
C7—O3—Ga1116.61 (14)C17—C16—C15118.4 (2)
C13—O5—Ga1116.85 (14)C17—C16—H16A120.8
C14—O7—Ga1116.91 (13)C15—C16—H16A120.8
C5—N1—C1123.75 (19)C16—C17—C18118.9 (2)
C5—N1—Ga1117.85 (14)C16—C17—H17A120.6
C1—N1—Ga1118.25 (15)C18—C17—H17A120.6
C8—N2—C12124.25 (18)C17—C18—C19118.6 (2)
C8—N2—Ga1116.74 (14)C17—C18—H18A120.7
C12—N2—Ga1118.95 (14)C19—C18—H18A120.7
N1—C1—C2119.9 (2)N3—C19—C18123.2 (2)
N1—C1—C6111.16 (18)N3—C19—C21116.56 (19)
C2—C1—C6128.9 (2)C18—C19—C21120.18 (19)
C1—C2—C3117.7 (2)O10—C20—O9120.9 (2)
C1—C2—H2A121.1O10—C20—C15122.2 (2)
C3—C2—H2A121.1O9—C20—C15116.82 (19)
C4—C3—C2120.8 (2)O12—C21—O11121.3 (2)
C4—C3—H3A119.6O12—C21—C19122.4 (2)
C2—C3—H3A119.6O11—C21—C19116.24 (19)
C3—C4—C5118.2 (2)C23—N4—C22111.88 (16)
C3—C4—H4A120.9C23—N4—H4B109.2
C5—C4—H4A120.9C22—N4—H4B109.2
N1—C5—C4119.5 (2)C23—N4—H4C109.2
N1—C5—C7111.65 (18)C22—N4—H4C109.2
C4—C5—C7128.8 (2)H4B—N4—H4C107.9
O2—C6—O1125.6 (2)N4—C22—C23i110.48 (17)
O2—C6—C1119.7 (2)N4—C22—H22A109.6
O1—C6—C1114.70 (19)C23i—C22—H22A109.6
O4—C7—O3125.8 (2)N4—C22—H22B109.6
O4—C7—C5120.05 (19)C23i—C22—H22B109.6
O3—C7—C5114.15 (18)H22A—C22—H22B108.1
N2—C8—C9119.8 (2)N4—C23—C22i109.99 (18)
N2—C8—C13111.98 (18)N4—C23—H23A109.7
C9—C8—C13128.25 (19)C22i—C23—H23A109.7
C8—C9—C10117.6 (2)N4—C23—H23B109.7
C8—C9—H9A121.2C22i—C23—H23B109.7
C10—C9—H9A121.2H23A—C23—H23B108.2
C11—C10—C9121.2 (2)H13A—O13—H13B114.1
C11—C10—H10A119.4H14B—O14—H14C137.1
C9—C10—H10A119.4H14B—O14—H14A109.3
C12—C11—C10117.8 (2)H14C—O14—H14A87.3
C12—C11—H11A121.1H14C—O14'—H14A115.4
N1—Ga1—O1—C66.27 (15)N1—C1—C6—O16.8 (3)
O5—Ga1—O1—C6114.09 (16)C2—C1—C6—O1176.0 (2)
N2—Ga1—O1—C6165.03 (15)Ga1—O3—C7—O4171.78 (17)
O3—Ga1—O1—C69.6 (3)Ga1—O3—C7—C56.4 (2)
O7—Ga1—O1—C687.00 (16)N1—C5—C7—O4174.74 (19)
N1—Ga1—O3—C75.46 (15)C4—C5—C7—O43.7 (3)
O5—Ga1—O3—C7113.27 (15)N1—C5—C7—O33.5 (3)
N2—Ga1—O3—C7165.92 (15)C4—C5—C7—O3178.0 (2)
O1—Ga1—O3—C78.8 (3)C12—N2—C8—C90.5 (3)
O7—Ga1—O3—C787.62 (15)Ga1—N2—C8—C9177.69 (16)
N1—Ga1—O5—C13175.84 (15)C12—N2—C8—C13178.39 (18)
N2—Ga1—O5—C131.56 (16)Ga1—N2—C8—C131.2 (2)
O3—Ga1—O5—C1396.10 (16)N2—C8—C9—C100.4 (3)
O1—Ga1—O5—C13104.53 (16)C13—C8—C9—C10178.3 (2)
O7—Ga1—O5—C135.7 (3)C8—C9—C10—C110.1 (3)
N1—Ga1—O7—C14174.98 (16)C9—C10—C11—C120.6 (3)
O5—Ga1—O7—C146.5 (3)C8—N2—C12—C110.0 (3)
N2—Ga1—O7—C142.31 (15)Ga1—N2—C12—C11177.16 (15)
O3—Ga1—O7—C1495.50 (15)C8—N2—C12—C14179.72 (18)
O1—Ga1—O7—C14105.67 (15)Ga1—N2—C12—C142.6 (2)
O5—Ga1—N1—C592.75 (16)C10—C11—C12—N20.5 (3)
O3—Ga1—N1—C53.32 (15)C10—C11—C12—C14179.8 (2)
O1—Ga1—N1—C5177.91 (16)Ga1—O5—C13—O6177.41 (19)
O7—Ga1—N1—C587.80 (16)Ga1—O5—C13—C81.3 (2)
O5—Ga1—N1—C191.47 (16)N2—C8—C13—O6178.7 (2)
O3—Ga1—N1—C1179.09 (17)C9—C8—C13—O60.0 (4)
O1—Ga1—N1—C12.14 (15)N2—C8—C13—O50.1 (3)
O7—Ga1—N1—C187.97 (16)C9—C8—C13—O5178.9 (2)
O5—Ga1—N2—C81.50 (15)Ga1—O7—C14—O8178.77 (17)
O3—Ga1—N2—C889.95 (16)Ga1—O7—C14—C121.6 (2)
O1—Ga1—N2—C892.02 (16)N2—C12—C14—O8179.09 (19)
O7—Ga1—N2—C8179.97 (16)C11—C12—C14—O81.2 (3)
O5—Ga1—N2—C12178.85 (16)N2—C12—C14—O70.6 (3)
O3—Ga1—N2—C1287.40 (16)C11—C12—C14—O7179.2 (2)
O1—Ga1—N2—C1290.63 (16)C19—N3—C15—C160.2 (3)
O7—Ga1—N2—C122.69 (15)C19—N3—C15—C20179.14 (19)
C5—N1—C1—C23.5 (3)N3—C15—C16—C170.2 (3)
Ga1—N1—C1—C2179.03 (16)C20—C15—C16—C17179.1 (2)
C5—N1—C1—C6173.91 (19)C15—C16—C17—C180.3 (3)
Ga1—N1—C1—C61.6 (2)C16—C17—C18—C190.3 (3)
N1—C1—C2—C32.1 (3)C15—N3—C19—C180.2 (3)
C6—C1—C2—C3174.9 (2)C15—N3—C19—C21178.88 (19)
C1—C2—C3—C40.7 (3)C17—C18—C19—N30.3 (3)
C2—C3—C4—C52.1 (3)C17—C18—C19—C21178.8 (2)
C1—N1—C5—C42.1 (3)N3—C15—C20—O10176.5 (2)
Ga1—N1—C5—C4177.58 (15)C16—C15—C20—O102.9 (3)
C1—N1—C5—C7176.57 (19)N3—C15—C20—O92.1 (3)
Ga1—N1—C5—C71.0 (2)C16—C15—C20—O9178.5 (2)
C3—C4—C5—N10.8 (3)N3—C19—C21—O12176.7 (2)
C3—C4—C5—C7179.1 (2)C18—C19—C21—O124.1 (3)
Ga1—O1—C6—O2170.02 (19)N3—C19—C21—O114.8 (3)
Ga1—O1—C6—C18.8 (2)C18—C19—C21—O11174.3 (2)
N1—C1—C6—O2172.1 (2)C23—N4—C22—C23i57.1 (3)
C2—C1—C6—O25.1 (4)C22—N4—C23—C22i56.8 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+1, z; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O13iv0.921.842.754 (3)169
N4—H4C···O140.921.942.818 (4)160
N4—H4C···O140.921.852.681 (4)150
O9—H9O···O8v0.891.902.710 (2)150
O11—H11O···O8v0.871.912.725 (2)155
O13—H13A···O40.971.882.823 (3)163
O13—H13B···O2iii0.921.842.765 (3)175
O14—H14A···O100.911.952.798 (5)153
O14—H14B···O1vi0.962.152.974 (5)143
O14—H14C···O14vii0.911.892.774 (6)164
N4—H4C···O12v0.922.502.863 (3)104
O9—H9O···N30.892.202.678 (3)113
O11—H11O···N30.872.222.690 (2)114
C3—H3A···O11viii0.952.483.042 (3)117
C9—H9A···O3ix0.952.543.341 (3)143
C17—H17A···O30.952.573.217 (3)126
C18—H18A···O6ix0.952.323.026 (3)130
C22—H22A···O5iii0.992.493.360 (3)146
C22—H22B···O2vi0.992.503.346 (3)144
C23—H23A···O2vi0.992.563.391 (3)142
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x+1, y+1, z; (vi) x, y1, z; (vii) x+1, y, z+1; (viii) x, y, z+1; (ix) x+2, y+2, z.

Experimental details

Crystal data
Chemical formula(C4H12N2)0.5[Ga(C7H3NO4)2]·C7H5NO4·2H2O
Mr647.16
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)8.6434 (4), 11.8582 (5), 13.7907 (6)
α, β, γ (°)65.7151 (10), 80.0391 (10), 86.9150 (11)
V3)1268.74 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.17
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998a)
Tmin, Tmax0.749, 0.807
No. of measured, independent and
observed [I > 2σ(I)] reflections
13018, 6067, 5263
Rint0.024
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.099, 1.00
No. of reflections6067
No. of parameters382
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.84

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SAINT-Plus(Bruker, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O13i0.921.842.754 (3)169
N4—H4C···O140.921.942.818 (4)160
N4—H4C···O14'0.921.852.681 (4)150
O9—H9O···O8ii0.891.902.710 (2)150
O11—H11O···O8ii0.871.912.725 (2)155
O13—H13A···O40.971.882.823 (3)163
O13—H13B···O2iii0.921.842.765 (3)175
O14—H14A···O100.911.952.798 (5)153
O14—H14B···O1iv0.962.152.974 (5)143
N4—H4C···O12ii0.922.502.863 (3)104
O9—H9O···N30.892.202.678 (3)113
O11—H11O···N30.872.222.690 (2)114
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x, y1, z.
 

References

First citationAghabozorg, H., Ghadermazi, M., Manteghi, F. & Nakhjavan, B. (2006a). Z. Anorg. Allg. Chem. 632, 2058–2064.  Web of Science CSD CrossRef CAS Google Scholar
First citationAghabozorg, H., Ghadermazi, M., Sheshmani, S. & Nakhjavan, B. (2006b). Acta Cryst. E62, m2371–m2373.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Nemati, A., Derikvand, Z. & Ghadermazi, M. (2007). Acta Cryst. E63, m2921.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Nemati, A., Derikvand, Z. & Ghadermazi, M. (2008). Acta Cryst. E64, m374.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT-Plus. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationRafizadeh, M. & Amani, V. (2006). Acta Cryst. E62, m90–m91.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRafizadeh, M., Amani, V. & Neumüller, B. (2005). Z. Anorg. Allg. Chem. 631, 1753–1755.  Web of Science CSD CrossRef CAS Google Scholar
First citationRafizadeh, M., Mehrabi, B. & Amani, V. (2006). Acta Cryst. E62, m1332–m1334.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheshmani, S., Ghadermazi, M. & Aghabozorg, H. (2006). Acta Cryst. E62, o3620–o3622.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1298-m1299
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds