organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-(−)-6-(4-Bromo­phen­yl)-2,3,5,6-tetra­hydro­thia­zolo[2,3-b]imidazolium hydrogen oxalate

aDepartment of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
*Correspondence e-mail: maks@iwonka.med.virginia.edu

(Received 1 August 2008; accepted 10 September 2008; online 17 September 2008)

The structure of the title compound, C11H12BrN2S+·C2HO4 (common name 6-bromo­levamisole hydrogen oxalate), is stabilized mainly by hydrogen bonds. Hydrogen oxalate anions form parallel coplanar chains via O—H⋯O hydrogen bonds, while there are N—H⋯O hydrogen-bonding inter­actions between the 6-bromo­levamisole cations and oxalate anions. Both five-membered rings from the 6-bromo­levamisole mol­ecule have a twist conformation. The mol­ecule has an extended conformation, with the 4-bromo­phenyl substituent positioned equatorially with N—C—C—C and C—C—C—C torsion angles of 39.8 (3) and 100.4 (3)°, respectively.

Related literature

For background information, see: Denier et al. (2002[Denier, C. C., Brisson-Lougarre, A. A., Biasini, G. G., Grozdea, J. J. & Fournier, D. D. (2002). BMC Biochem. 3, 2.]); Lee et al. (1975[Lee, M. H., Huang, Y. M., Agrawal, C. W. & Sartorelli, A. C. (1975). Biochem. Pharmacol. 24, 1175-1178.]); Luo et al. (2000[Luo, J. X., Zhu, T., Evagelidis, A., Pato, M. D. & Hanrahan, J. W. (2000). Am. J. Physiol. Cell Physiol. 279, 108-119.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12BrN2S+·C2HO4

  • Mr = 373.22

  • Orthorhombic, P 21 21 21

  • a = 5.615 (1) Å

  • b = 8.256 (1) Å

  • c = 32.539 (1) Å

  • V = 1508.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.88 mm−1

  • T = 89 (2) K

  • 0.50 × 0.03 × 0.03 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]) Tmin = 0.90, Tmax = 0.92

  • 39658 measured reflections

  • 4061 independent reflections

  • 3438 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.074

  • S = 1.10

  • 4061 reflections

  • 230 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.51 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1863 Friedel pairs

  • Flack parameter: −0.018 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O3i 1.03 (5) 1.48 (5) 2.483 (2) 164 (4)
N2—H1N⋯O4 0.83 (4) 1.95 (4) 2.753 (3) 163 (4)
N2—H1N⋯O1 0.83 (4) 2.37 (4) 2.879 (3) 120 (3)
Symmetry code: (i) x-1, y, z.

Data collection: HKL-2000 (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: HKL-2000; data reduction: HKL-2000; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and HKL-3000SM (Minor et al., 2006[Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. (2006). Acta Cryst. D62, 859-866.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and HKL-3000SM; molecular graphics: HKL-3000SM, Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: HKL-3000SM.

Supporting information


Comment top

6-Bromolevamisole (Fig. 1) is a salt of a strong activator of cystic fibrosis conductance regulator (CTFR) chloride channels, including those in human airway epithelial cells. It shows a strong reduction in activity of Protein Phosphatases 2C and 2A, two of the most likely candidates for being a CTFR phosphatase (Luo et al., 2000). It has also been shown to inhibit alkaline phosphatases, including being an uncompetitive inhibitor of an alkaline phosphatase involved in sarcoma (Lee et al., 1975). Furthermore, since inhibitors affect alkaline phosphatase from the white blood cells of mothers of fetuses with Down's syndrome differently, the cation could be involved in screening for it (Denier et al., 2002).

Packing (Fig. 2) is stabilized by hydrogen bonds (Table 1). The oxalate ions form parallel, coplanar, one-dimensional chains via O—H···O hydrogen bonds, with each link in the chain having an N—H···O hydrogen bond from the deprotonated oxygen to the protonated nitrogen (N2) of the 6-bromolevamisole. The bromine also forms a short contact (3.111 Å) with the O3 (-1/2 + x, 1/2 - y, 2 - z) atom.

Related literature top

For background information, see: Denier et al. (2002); Lee et al. (1975); Luo et al. (2000).

Experimental top

6-Bromolevamisole oxalate was purchased from Sigma, and dissolved in a mixture of 1-butanol and DMSO in a 1:1 ratio. A single crystal suitable for X-ray diffraction study was obtained by slow evaporation at room temperature.

Refinement top

Hydrogen atoms attached to C7, C8, and C9 were placed in ideal positions, and refined using a riding-model approximation with C—H bond lengths of 0.98 Å in the case of C7 and 0.97 Å in the cases of C8 and C9. All other hydrogen atoms were located in a difference density Fourier map and refined with isotropic displacement parameters.

Computing details top

Data collection: HKL-2000 (Otwinowski & Minor, 1997); cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: HKL-2000 (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008), HKL-3000SM (Minor et al., 2006); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008), HKL-3000SM (Minor et al., 2006); molecular graphics: HKL-3000SM (Minor et al., 2006), Mercury (Macrae et al., 2006), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: HKL-3000SM (Minor et al., 2006).

Figures top
[Figure 1] Fig. 1. An asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level, while hydrogen atoms are drawn as spheres of an arbitrary radius.
[Figure 2] Fig. 2. A packing diagram with hydrogen bonds marked with blue, dashed lines. Short contacts between Br···O3 (-1/2 + x, 1/2 - y, 2 - z) are marked with red, dashed lines.
(S)-(-)-6-(4-Bromophenyl)-2,3,5,6-tetrahydrothiazolo[2,3- b]imidazolium hydrogen oxalate top
Crystal data top
C11H12BrN2S+·C2HO4Dx = 1.643 Mg m3
Mr = 373.22Melting point: 465 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71074 Å
Hall symbol: P 2ac 2abCell parameters from 39658 reflections
a = 5.615 (1) Åθ = 2.6–29.1°
b = 8.256 (1) ŵ = 2.88 mm1
c = 32.539 (1) ÅT = 89 K
V = 1508.4 (3) Å3Needle, colourless
Z = 40.50 × 0.03 × 0.03 mm
F(000) = 752
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4061 independent reflections
Radiation source: fine-focus sealed tube3438 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
Detector resolution: 10 pixels mm-1θmax = 29.1°, θmin = 2.6°
ω scans with χ offseth = 77
Absorption correction: multi-scan
(Otwinowski et al., 2003)
k = 1111
Tmin = 0.90, Tmax = 0.92l = 4444
39658 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0326P)2 + 0.8007P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
4061 reflectionsΔρmax = 0.67 e Å3
230 parametersΔρmin = 0.51 e Å3
0 restraintsAbsolute structure: Flack (1983), 1686 Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.018 (7)
Crystal data top
C11H12BrN2S+·C2HO4V = 1508.4 (3) Å3
Mr = 373.22Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.615 (1) ŵ = 2.88 mm1
b = 8.256 (1) ÅT = 89 K
c = 32.539 (1) Å0.50 × 0.03 × 0.03 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4061 independent reflections
Absorption correction: multi-scan
(Otwinowski et al., 2003)
3438 reflections with I > 2σ(I)
Tmin = 0.90, Tmax = 0.92Rint = 0.081
39658 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074Δρmax = 0.67 e Å3
S = 1.10Δρmin = 0.51 e Å3
4061 reflectionsAbsolute structure: Flack (1983), 1686 Friedel pairs?
230 parametersAbsolute structure parameter: 0.018 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.32101 (6)0.56744 (4)1.059826 (8)0.03817 (9)
S10.35196 (13)0.49266 (9)0.76858 (2)0.02854 (14)
N20.2692 (4)0.4064 (3)0.84952 (6)0.0204 (4)
C110.2064 (4)0.4764 (3)0.81524 (7)0.0196 (5)
C70.0668 (4)0.4192 (3)0.87900 (7)0.0198 (5)
H70.02670.31900.87810.024*
N10.0024 (4)0.5521 (3)0.81664 (6)0.0201 (4)
C80.0808 (4)0.5585 (3)0.85977 (7)0.0211 (5)
H8A0.25050.53870.86220.025*
H8B0.04270.66200.87230.025*
C90.0363 (6)0.6744 (4)0.78469 (8)0.0261 (6)
C10.1407 (4)0.4519 (3)0.92285 (7)0.0208 (5)
C20.3255 (5)0.5587 (3)0.93230 (7)0.0247 (5)
C100.0970 (6)0.6059 (4)0.74766 (9)0.0329 (7)
C30.3820 (5)0.5913 (4)0.97307 (9)0.0307 (6)
C50.0649 (5)0.4154 (4)0.99535 (9)0.0313 (6)
C60.0123 (6)0.3807 (4)0.95449 (9)0.0288 (6)
C40.2489 (5)0.5198 (3)1.00383 (8)0.0272 (6)
O30.8027 (3)0.0585 (2)0.84464 (5)0.0197 (3)
O40.6388 (3)0.1887 (2)0.84329 (6)0.0238 (4)
C1B0.6295 (4)0.0378 (3)0.84479 (7)0.0172 (5)
C2B0.3822 (4)0.0442 (3)0.84594 (7)0.0186 (5)
O10.2089 (3)0.0602 (2)0.84707 (6)0.0279 (4)
O20.3598 (3)0.1898 (2)0.84549 (7)0.0320 (5)
H20.405 (6)0.611 (4)0.9106 (11)0.040 (10)*
H50.032 (7)0.372 (5)1.0134 (12)0.051 (11)*
H10B0.158 (8)0.694 (5)0.7302 (12)0.058 (11)*
H9A0.201 (7)0.684 (4)0.7791 (9)0.027 (8)*
H30.500 (7)0.655 (4)0.9791 (10)0.037 (9)*
H9B0.031 (6)0.780 (4)0.7948 (9)0.027 (8)*
H10A0.009 (7)0.530 (5)0.7315 (12)0.052 (11)*
H60.104 (7)0.305 (5)0.9487 (10)0.045 (10)*
H1O0.042 (9)0.012 (5)0.8512 (14)0.076 (15)*
H1N0.361 (7)0.327 (4)0.8501 (11)0.044 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0587 (2)0.03403 (15)0.02182 (11)0.00178 (15)0.00718 (13)0.00204 (11)
S10.0306 (3)0.0314 (3)0.0237 (3)0.0028 (3)0.0062 (3)0.0047 (2)
N20.0192 (10)0.0191 (11)0.0230 (9)0.0027 (8)0.0002 (8)0.0023 (8)
C110.0207 (11)0.0133 (12)0.0248 (11)0.0011 (9)0.0004 (9)0.0053 (8)
C70.0188 (11)0.0176 (12)0.0230 (11)0.0011 (10)0.0009 (9)0.0003 (9)
N10.0192 (9)0.0205 (11)0.0206 (9)0.0028 (9)0.0001 (7)0.0001 (8)
C80.0186 (11)0.0235 (12)0.0212 (10)0.0031 (11)0.0009 (8)0.0011 (10)
C90.0315 (16)0.0259 (14)0.0209 (12)0.0032 (12)0.0035 (11)0.0018 (10)
C10.0212 (12)0.0186 (12)0.0225 (10)0.0015 (10)0.0018 (9)0.0009 (9)
C20.0248 (12)0.0240 (12)0.0254 (11)0.0056 (12)0.0014 (10)0.0017 (9)
C100.0430 (18)0.0332 (16)0.0225 (12)0.0072 (13)0.0009 (12)0.0022 (11)
C30.0328 (16)0.0310 (16)0.0282 (13)0.0079 (12)0.0028 (11)0.0046 (11)
C50.0358 (15)0.0316 (16)0.0263 (12)0.0052 (13)0.0022 (11)0.0044 (12)
C60.0315 (15)0.0262 (14)0.0285 (13)0.0081 (12)0.0030 (11)0.0025 (11)
C40.0369 (14)0.0251 (13)0.0195 (11)0.0047 (11)0.0038 (10)0.0006 (9)
O30.0130 (7)0.0178 (7)0.0285 (8)0.0007 (7)0.0008 (6)0.0009 (7)
O40.0174 (9)0.0172 (8)0.0368 (9)0.0001 (7)0.0003 (8)0.0004 (7)
C1B0.0153 (10)0.0211 (13)0.0153 (9)0.0003 (9)0.0006 (8)0.0010 (8)
C2B0.0153 (11)0.0214 (13)0.0191 (10)0.0004 (9)0.0011 (8)0.0012 (9)
O10.0113 (8)0.0192 (8)0.0532 (11)0.0004 (7)0.0000 (7)0.0015 (9)
O20.0170 (9)0.0183 (9)0.0606 (13)0.0004 (7)0.0001 (9)0.0025 (9)
Geometric parameters (Å, º) top
Br1—C41.908 (3)C1—C21.396 (4)
S1—C111.729 (2)C2—C31.390 (3)
S1—C101.840 (3)C2—H20.94 (4)
N2—C111.305 (3)C10—H10B0.98 (4)
N2—C71.491 (3)C10—H10A0.96 (4)
N2—H1N0.83 (4)C3—C41.382 (4)
C11—N11.329 (3)C3—H30.87 (4)
C7—C11.510 (3)C5—C41.373 (4)
C7—C81.549 (3)C5—C61.392 (4)
C7—H70.9800C5—H50.88 (4)
N1—C91.461 (3)C6—H60.92 (4)
N1—C81.472 (3)O3—C1B1.257 (3)
C8—H8A0.9700O4—C1B1.248 (3)
C8—H8B0.9700C1B—C2B1.546 (3)
C9—C101.527 (4)C2B—O21.208 (3)
C9—H9A0.95 (4)C2B—O11.300 (3)
C9—H9B1.00 (3)O1—H1O1.03 (5)
C1—C61.387 (4)
C11—S1—C1089.80 (13)C2—C1—C7121.7 (2)
C11—N2—C7108.2 (2)C3—C2—C1120.2 (2)
C11—N2—H1N122 (2)C3—C2—H2121 (2)
C7—N2—H1N121 (3)C1—C2—H2118 (2)
N2—C11—N1114.6 (2)C9—C10—S1106.10 (19)
N2—C11—S1131.1 (2)C9—C10—H10B111 (2)
N1—C11—S1114.23 (18)S1—C10—H10B109 (3)
N2—C7—C1114.3 (2)C9—C10—H10A115 (2)
N2—C7—C8101.55 (19)S1—C10—H10A106 (2)
C1—C7—C8113.3 (2)H10B—C10—H10A110 (3)
N2—C7—H7109.1C4—C3—C2119.0 (3)
C1—C7—H7109.1C4—C3—H3121 (2)
C8—C7—H7109.1C2—C3—H3120 (2)
C11—N1—C9114.5 (2)C4—C5—C6118.7 (3)
C11—N1—C8108.2 (2)C4—C5—H5126 (3)
C9—N1—C8127.9 (2)C6—C5—H5115 (3)
N1—C8—C7101.46 (19)C1—C6—C5120.8 (3)
N1—C8—H8A111.5C1—C6—H6120 (2)
C7—C8—H8A111.5C5—C6—H6119 (2)
N1—C8—H8B111.5C5—C4—C3122.0 (3)
C7—C8—H8B111.5C5—C4—Br1118.7 (2)
H8A—C8—H8B109.3C3—C4—Br1119.3 (2)
N1—C9—C10104.0 (2)O4—C1B—O3126.8 (2)
N1—C9—H9A108.6 (19)O4—C1B—C2B118.5 (2)
C10—C9—H9A110.9 (18)O3—C1B—C2B114.69 (19)
N1—C9—H9B108.4 (17)O2—C2B—O1125.6 (2)
C10—C9—H9B113.1 (18)O2—C2B—C1B121.9 (2)
H9A—C9—H9B111 (3)O1—C2B—C1B112.4 (2)
C6—C1—C2119.3 (2)C2B—O1—H1O115 (3)
C6—C1—C7118.9 (2)
C7—N2—C11—N16.2 (3)N2—C7—C1—C239.8 (3)
C7—N2—C11—S1175.80 (19)C8—C7—C1—C275.9 (3)
C10—S1—C11—N2179.2 (3)C6—C1—C2—C30.9 (4)
C10—S1—C11—N12.8 (2)C7—C1—C2—C3177.2 (2)
C11—N2—C7—C1141.1 (2)N1—C9—C10—S132.9 (3)
C11—N2—C7—C818.8 (2)C11—S1—C10—C921.4 (2)
N2—C11—N1—C9159.8 (2)C1—C2—C3—C41.6 (4)
S1—C11—N1—C918.5 (3)C2—C1—C6—C50.4 (4)
N2—C11—N1—C810.3 (3)C7—C1—C6—C5176.0 (3)
S1—C11—N1—C8168.00 (17)C4—C5—C6—C10.9 (5)
C11—N1—C8—C721.0 (3)C6—C5—C4—C30.2 (4)
C9—N1—C8—C7165.2 (2)C6—C5—C4—Br1180.0 (2)
N2—C7—C8—N123.0 (2)C2—C3—C4—C51.1 (4)
C1—C7—C8—N1146.1 (2)C2—C3—C4—Br1178.7 (2)
C11—N1—C9—C1033.8 (3)O4—C1B—C2B—O2176.5 (2)
C8—N1—C9—C10176.1 (2)O3—C1B—C2B—O22.1 (3)
N2—C7—C1—C6143.9 (3)O4—C1B—C2B—O13.0 (3)
C8—C7—C1—C6100.4 (3)O3—C1B—C2B—O1178.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O3i1.03 (5)1.48 (5)2.483 (2)164 (4)
N2—H1N···O40.83 (4)1.95 (4)2.753 (3)163 (4)
N2—H1N···O10.83 (4)2.37 (4)2.879 (3)120 (3)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC11H12BrN2S+·C2HO4
Mr373.22
Crystal system, space groupOrthorhombic, P212121
Temperature (K)89
a, b, c (Å)5.615 (1), 8.256 (1), 32.539 (1)
V3)1508.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.88
Crystal size (mm)0.50 × 0.03 × 0.03
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(Otwinowski et al., 2003)
Tmin, Tmax0.90, 0.92
No. of measured, independent and
observed [I > 2σ(I)] reflections
39658, 4061, 3438
Rint0.081
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.074, 1.10
No. of reflections4061
No. of parameters230
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.67, 0.51
Absolute structureFlack (1983), 1686 Friedel pairs?
Absolute structure parameter0.018 (7)

Computer programs: HKL-2000 (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), HKL-3000SM (Minor et al., 2006), SHELXL97 (Sheldrick, 2008), HKL-3000SM (Minor et al., 2006), HKL-3000SM (Minor et al., 2006), Mercury (Macrae et al., 2006), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 (Farrugia, 1997), HKL-3000SM (Minor et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O3i1.03 (5)1.48 (5)2.483 (2)164 (4)
N2—H1N···O40.83 (4)1.95 (4)2.753 (3)163 (4)
N2—H1N···O10.83 (4)2.37 (4)2.879 (3)120 (3)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors thank Zbigniew Dauter for helpful discussions. This work was supported by contract No. GI11496 from HKL Research, Inc.

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDenier, C. C., Brisson-Lougarre, A. A., Biasini, G. G., Grozdea, J. J. & Fournier, D. D. (2002). BMC Biochem. 3, 2.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLee, M. H., Huang, Y. M., Agrawal, C. W. & Sartorelli, A. C. (1975). Biochem. Pharmacol. 24, 1175–1178.  PubMed CAS Web of Science Google Scholar
First citationLuo, J. X., Zhu, T., Evagelidis, A., Pato, M. D. & Hanrahan, J. W. (2000). Am. J. Physiol. Cell Physiol. 279, 108–119.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMinor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. (2006). Acta Cryst. D62, 859–866.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds