organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2R)-N-[5-(4-Chloro­phen­yl)-1,3,4-thia­diazol-2-yl]-2-(cinnamoylamino)propanamide

aState Key Laboratory of Food Science and Technology, Nanchang University, 330047 Nanchang, JiangXi, People's Republic of China, and bDepartment of Pharmacy, NanChang University Medical College, 330006 Nanchang, JiangXi, People's Republic of China
*Correspondence e-mail: tugg199@yahoo.com

(Received 5 September 2008; accepted 22 September 2008; online 24 September 2008)

In the title compound, C20H17ClN4O2S, the dihedral angle between the two benzene rings is 65.9 (1)°; the corresponding angle between the 4-chloro­phenyl and thia­diazole rings is 3.4 (8)°. The conformations of the N—H and C=O bonds are anti with respect to each other. The enone groups show a trans configuration. The structure displays intermolecular N—H⋯O, C—H⋯N, C—H⋯S and C—H⋯O hydrogen bonding.

Related literature

For 1,3,4-thia­diazole scaffold compounds and their biological activity, see: Tu et al. (2008[Tu, G. G., Li, S. H., Huang, H. M., Li, G., Xiong, F., Mai, X., Zhu, H. W., Kuang, B. H. & Xu, W. F. (2008). Bioorg. Med. Chem. 16, 6663-6668.]). For the synthesis, see: Foroumadi et al. (1999[Foroumadi, A., Daneshtalab, M. & Shafiee, A. (1999). Arzneim. Forsch. 49, 1035-1038.]); Levy & Palmer (1942[Levy, M. & Palmer, A. H. (1942). J. Biol. Chem. 146, 493-495.]); Song et al. (1992[Song, K. S., Ishikawa, Y., Kobayashi, S., Sankawa, U. & Ebizuka, Y. (1992). Phytochemistry, 31, 823-826.]). For related structures, see: Fun et al. (2008[Fun, H.-K., Chantrapromma, S., Patil, P. S., Karthikeyan, M. S. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o956-o957.]); Gowda et al. (2008[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o950.]) Thiruvalluvar et al. (2008[Thiruvalluvar, A., Subramanyam, M., Butcher, R. J., Karabasanagouda, T. & Adhikari, A. V. (2008). Acta Cryst. E64, o1263.]).

[Scheme 1]

Experimental

Crystal data
  • C20H17ClN4O2S

  • Mr = 412.89

  • Orthorhombic, P 21 21 21

  • a = 6.6324 (15) Å

  • b = 8.575 (2) Å

  • c = 34.367 (8) Å

  • V = 1954.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 296 (2) K

  • 0.41 × 0.17 × 0.07 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 14721 measured reflections

  • 4706 independent reflections

  • 2807 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.099

  • S = 1.02

  • 4706 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1876 Friedel pairs

  • Flack parameter: −0.12 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.86 1.94 2.802 (3) 175
C7—H7A⋯N3ii 0.93 2.54 3.446 (3) 164
C11—H11C⋯S1iii 0.96 2.77 3.526 (3) 136
C20—H20A⋯O2iv 0.93 2.48 3.380 (3) 162
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) x+1, y, z; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: APEX2; software used to prepare material for publication: APEX2 and publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

In our previous work, 1,3,4-thiadiazole scaffold compounds and their biological activity have been studied (Tu et al., 2008). In view of the importance of these organic materials, the title compound (Fig. 1) was synthesized (Foroumadi et al., 1999; Levy & Palmer 1942; Song et al., 1992) and its crystal structure is reported here. The structure of title compound, C20H17ClN4O2S, has orthorhombic (P212121) symmetry. The dihedral angles between the p-cholobenzene and thiadiazol rings is 3.4 (8) °, the corresponding values between the two benzene rings are measured to 65.9 (1)°. The conformations of the N—H and C=O bonds are anti with respect to each other. The enone groups are trans configurated. Bond lengths and angles are in normal ranges and comparable to those in related structures (Gowda et al., 2008; Fun et al., 2008; Thiruvalluvar et al., 2008). In the crystal structure, molecules are linked through intermolecular hydrogen bonds forming a three-dimensional network (Table 1, Figure 2).

Related literature top

For 1,3,4-thiadiazole scaffold compounds and their biological activity, see: Tu et al. (2008). For the synthesis, see: Foroumadi et al. (1999); Levy & Palmer (1942); Song et al. (1992). For related structures, see: Fun et al. (2008); Gowda et al. (2008) Thiruvalluvar et al. (2008).

Experimental top

N,N-Dicyclohexylcarbodiimide (5.7 mmol) was added to a cooled solution of N-cinnamoyl-D-alanine (5.6 mmol) and N-hydroxysuccinimide (5.6 mmol) in freshly distillation dioxane (30 ml). The reaction mixture was stirred overnight at room temperature. The insoluble material was filtered off and washed with cold dioxane. 2-Amino-5-(4-choloxyphenyl)-1,3,4-thiadiazole (5.5 mmol) was added to the filtrate and the reaction mixture was stirred for 48 hr at room temperature. The solvent was removed under reduced pressure. The residual was dissolved in EtOAc and the insoluble material was filtered off. The filtrate was washed successively with saturated Na2CO3 solution(20 ml, x 3), water(20 ml, x 1), 0.1 M HCl(20 ml, x 3) and water(20 ml, x 1). The organic layer evaporated in vacuo, the residual was recrystallized from methanol. Colorless block-shaped single crystals of the title compound suitable for X-ray diffraction analysis precipitated after several days.

Refinement top

H atoms were positioned geometrically and refined using a riding model using SHELXL97 default values (Uĩso(H) = 1.2 Ueq(C) for CH and CH2 groups and Uĩso(H) = 1.5 Ueq(C) for CH3). Refinement with all data (Friedel opposites not merged) led to an unsuitably large error of the Flack parameter. The final refinement was therefore performed with a data set with merged Friedel pairs, hence the calculated Flack parameter is meaningless. The absolute configuration is nevertheless undoubtly as described since enantiomerically pure starting compounds were used and the reaction conditions are not condidered to lead to racemization or inversion.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: APEX2 (Bruker, 2004); software used to prepare material for publication: APEX2 (Bruker, 2004) and publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of title compound, viewed along the a axis with hydrogen bonds drawn as dashed lines.
(2R)-N-[5-(4-Chlorophenyl)-1,3,4-thiadiazol-2-yl]-2- (cinnamoylamino)propanamide top
Crystal data top
C20H17ClN4O2SDx = 1.403 Mg m3
Mr = 412.89Melting point: 480 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3308 reflections
a = 6.6324 (15) Åθ = 2.4–21.0°
b = 8.575 (2) ŵ = 0.33 mm1
c = 34.367 (8) ÅT = 296 K
V = 1954.6 (8) Å3Bolck, colourless
Z = 40.41 × 0.18 × 0.07 mm
F(000) = 856
Data collection top
Bruker SMART CCD area-detector
diffractometer
2807 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 28.4°, θmin = 2.4°
ϕ and ω scansh = 88
14721 measured reflectionsk = 1111
4706 independent reflectionsl = 4544
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0226P)2 + 0.0747P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4706 reflectionsΔρmax = 0.15 e Å3
254 parametersΔρmin = 0.20 e Å3
0 restraintsAbsolute structure: Flack (1983), 1876 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.12 (7)
Crystal data top
C20H17ClN4O2SV = 1954.6 (8) Å3
Mr = 412.89Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.6324 (15) ŵ = 0.33 mm1
b = 8.575 (2) ÅT = 296 K
c = 34.367 (8) Å0.41 × 0.18 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2807 reflections with I > 2σ(I)
14721 measured reflectionsRint = 0.046
4706 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.099Δρmax = 0.15 e Å3
S = 1.02Δρmin = 0.20 e Å3
4706 reflectionsAbsolute structure: Flack (1983), 1876 Friedel pairs
254 parametersAbsolute structure parameter: 0.12 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6789 (5)0.2710 (4)0.19355 (8)0.0782 (9)
H1B0.60670.20300.17770.094*
C20.6159 (6)0.2979 (4)0.23129 (10)0.0996 (13)
H2B0.50240.24680.24080.120*
C30.7184 (6)0.3981 (5)0.25465 (9)0.0977 (12)
H3B0.67450.41580.28000.117*
C40.8862 (6)0.4732 (4)0.24098 (8)0.0937 (12)
H4B0.95510.54340.25680.112*
C50.9526 (5)0.4443 (4)0.20360 (8)0.0756 (9)
H5A1.06920.49270.19470.091*
C60.8481 (5)0.3443 (3)0.17924 (7)0.0613 (8)
C70.9087 (5)0.3172 (3)0.13882 (7)0.0612 (8)
H7A0.82460.25330.12420.073*
C81.0669 (4)0.3722 (3)0.12100 (7)0.0584 (7)
H8A1.15790.43140.13530.070*
C91.1094 (4)0.3464 (3)0.07984 (7)0.0523 (7)
C101.3357 (4)0.4044 (3)0.02573 (6)0.0483 (6)
H10A1.34210.29340.01900.058*
C111.5445 (4)0.4755 (3)0.02035 (8)0.0626 (8)
H11A1.63840.42450.03740.094*
H11B1.53970.58470.02640.094*
H11C1.58700.46190.00610.094*
C121.1836 (4)0.4831 (3)0.00072 (7)0.0494 (6)
C131.0385 (4)0.4721 (3)0.06496 (7)0.0471 (6)
C140.7573 (4)0.5583 (3)0.10172 (6)0.0494 (6)
C150.5693 (4)0.6256 (3)0.11652 (7)0.0490 (6)
C160.4931 (5)0.5842 (3)0.15249 (7)0.0639 (7)
H16A0.56250.51150.16750.077*
C170.3163 (5)0.6479 (3)0.16687 (8)0.0669 (8)
H17A0.26790.61980.19130.080*
C180.2142 (4)0.7538 (3)0.14421 (8)0.0589 (7)
C190.2848 (5)0.7959 (3)0.10843 (8)0.0637 (8)
H19A0.21370.86760.09350.076*
C200.4600 (4)0.7328 (3)0.09455 (8)0.0591 (7)
H20A0.50680.76190.07010.071*
Cl10.00738 (13)0.83679 (9)0.16181 (2)0.0835 (3)
N11.2732 (3)0.4188 (2)0.06588 (5)0.0537 (5)
H1A1.34360.47580.08130.064*
N21.1824 (3)0.4305 (2)0.03825 (5)0.0525 (5)
H2A1.27680.36810.04550.063*
N31.0265 (4)0.4021 (3)0.09856 (6)0.0590 (6)
N40.8619 (4)0.4535 (2)0.12001 (6)0.0585 (6)
O11.0027 (3)0.2679 (2)0.05768 (5)0.0672 (5)
O21.0712 (3)0.5869 (2)0.00979 (5)0.0638 (5)
S10.85258 (10)0.60793 (7)0.056449 (17)0.05201 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.081 (3)0.090 (2)0.0635 (18)0.017 (2)0.0140 (18)0.0047 (16)
C20.112 (4)0.116 (3)0.070 (2)0.030 (3)0.029 (2)0.004 (2)
C30.110 (3)0.124 (3)0.0594 (19)0.021 (3)0.021 (2)0.006 (2)
C40.113 (3)0.114 (3)0.0541 (18)0.028 (3)0.0073 (19)0.0090 (18)
C50.080 (2)0.093 (2)0.0539 (17)0.0173 (19)0.0071 (16)0.0014 (15)
C60.068 (2)0.0673 (18)0.0484 (14)0.0030 (16)0.0023 (14)0.0034 (12)
C70.075 (2)0.0623 (16)0.0465 (15)0.0090 (16)0.0007 (15)0.0002 (13)
C80.0591 (19)0.0670 (17)0.0490 (15)0.0077 (15)0.0026 (13)0.0025 (13)
C90.0530 (19)0.0535 (15)0.0503 (14)0.0074 (13)0.0006 (13)0.0012 (12)
C100.0448 (15)0.0539 (14)0.0464 (13)0.0036 (14)0.0008 (12)0.0019 (11)
C110.0491 (19)0.0728 (18)0.0658 (17)0.0078 (15)0.0092 (14)0.0079 (14)
C120.0496 (18)0.0524 (15)0.0460 (14)0.0044 (13)0.0050 (12)0.0053 (11)
C130.0461 (16)0.0516 (13)0.0437 (13)0.0004 (12)0.0065 (12)0.0024 (11)
C140.0524 (18)0.0529 (15)0.0428 (13)0.0032 (13)0.0074 (12)0.0003 (11)
C150.0502 (17)0.0516 (14)0.0453 (14)0.0025 (13)0.0051 (12)0.0000 (12)
C160.067 (2)0.0747 (18)0.0499 (15)0.0125 (17)0.0012 (15)0.0069 (13)
C170.065 (2)0.081 (2)0.0540 (15)0.0083 (17)0.0075 (15)0.0055 (14)
C180.0460 (18)0.0622 (17)0.0686 (18)0.0037 (14)0.0010 (14)0.0109 (14)
C190.055 (2)0.0669 (18)0.0695 (18)0.0050 (15)0.0080 (15)0.0077 (14)
C200.056 (2)0.0666 (17)0.0545 (16)0.0020 (16)0.0009 (14)0.0103 (13)
Cl10.0582 (5)0.0923 (6)0.1001 (6)0.0079 (4)0.0089 (5)0.0129 (4)
N10.0521 (14)0.0672 (13)0.0417 (11)0.0115 (12)0.0006 (10)0.0046 (10)
N20.0508 (14)0.0629 (13)0.0439 (11)0.0086 (11)0.0030 (10)0.0048 (9)
N30.0611 (16)0.0685 (13)0.0472 (12)0.0108 (13)0.0006 (11)0.0074 (11)
N40.0591 (16)0.0676 (13)0.0488 (11)0.0069 (13)0.0014 (12)0.0090 (10)
O10.0605 (13)0.0815 (12)0.0595 (11)0.0230 (11)0.0052 (11)0.0127 (10)
O20.0666 (13)0.0715 (12)0.0534 (10)0.0174 (11)0.0024 (9)0.0166 (9)
S10.0507 (4)0.0584 (4)0.0469 (3)0.0047 (3)0.0040 (3)0.0059 (3)
Geometric parameters (Å, º) top
C1—C61.377 (4)C11—H11C0.9600
C1—C21.382 (4)C12—O21.216 (3)
C1—H1B0.9300C12—N21.367 (3)
C2—C31.359 (5)C13—N31.304 (3)
C2—H2B0.9300C13—N21.372 (3)
C3—C41.369 (5)C13—S11.721 (3)
C3—H3B0.9300C14—N41.298 (3)
C4—C51.380 (4)C14—C151.465 (3)
C4—H4B0.9300C14—S11.732 (2)
C5—C61.384 (4)C15—C161.382 (3)
C5—H5A0.9300C15—C201.393 (3)
C6—C71.465 (4)C16—C171.385 (4)
C7—C81.303 (4)C16—H16A0.9300
C7—H7A0.9300C17—C181.375 (4)
C8—C91.459 (3)C17—H17A0.9300
C8—H8A0.9300C18—C191.364 (4)
C9—O11.239 (3)C18—Cl11.741 (3)
C9—N11.340 (3)C19—C201.368 (4)
C10—N11.446 (3)C19—H19A0.9300
C10—C121.517 (3)C20—H20A0.9300
C10—C111.524 (3)N1—H1A0.8600
C10—H10A0.9800N2—H2A0.8600
C11—H11A0.9600N3—N41.389 (3)
C11—H11B0.9600
C6—C1—C2120.4 (3)H11B—C11—H11C109.5
C6—C1—H1B119.8O2—C12—N2121.2 (2)
C2—C1—H1B119.8O2—C12—C10123.8 (2)
C3—C2—C1120.6 (4)N2—C12—C10115.0 (2)
C3—C2—H2B119.7N3—C13—N2121.0 (2)
C1—C2—H2B119.7N3—C13—S1114.7 (2)
C2—C3—C4120.1 (3)N2—C13—S1124.11 (17)
C2—C3—H3B120.0N4—C14—C15124.0 (2)
C4—C3—H3B120.0N4—C14—S1114.2 (2)
C3—C4—C5119.6 (3)C15—C14—S1121.72 (18)
C3—C4—H4B120.2C16—C15—C20117.6 (2)
C5—C4—H4B120.2C16—C15—C14121.4 (2)
C4—C5—C6121.0 (3)C20—C15—C14121.0 (2)
C4—C5—H5A119.5C15—C16—C17121.8 (3)
C6—C5—H5A119.5C15—C16—H16A119.1
C1—C6—C5118.3 (3)C17—C16—H16A119.1
C1—C6—C7119.3 (3)C18—C17—C16118.4 (3)
C5—C6—C7122.3 (3)C18—C17—H17A120.8
C8—C7—C6127.5 (3)C16—C17—H17A120.8
C8—C7—H7A116.2C19—C18—C17121.1 (3)
C6—C7—H7A116.2C19—C18—Cl1119.6 (2)
C7—C8—C9123.8 (3)C17—C18—Cl1119.3 (2)
C7—C8—H8A118.1C18—C19—C20120.1 (3)
C9—C8—H8A118.1C18—C19—H19A120.0
O1—C9—N1119.7 (2)C20—C19—H19A120.0
O1—C9—C8124.6 (3)C19—C20—C15121.0 (3)
N1—C9—C8115.7 (2)C19—C20—H20A119.5
N1—C10—C12110.1 (2)C15—C20—H20A119.5
N1—C10—C11110.0 (2)C9—N1—C10122.3 (2)
C12—C10—C11110.7 (2)C9—N1—H1A118.8
N1—C10—H10A108.7C10—N1—H1A118.8
C12—C10—H10A108.7C12—N2—C13123.3 (2)
C11—C10—H10A108.7C12—N2—H2A118.3
C10—C11—H11A109.5C13—N2—H2A118.3
C10—C11—H11B109.5C13—N3—N4111.8 (2)
H11A—C11—H11B109.5C14—N4—N3112.5 (2)
C10—C11—H11C109.5C13—S1—C1486.70 (12)
H11A—C11—H11C109.5
C6—C1—C2—C30.7 (6)C16—C17—C18—C190.2 (4)
C1—C2—C3—C40.3 (6)C16—C17—C18—Cl1179.5 (2)
C2—C3—C4—C51.2 (6)C17—C18—C19—C200.1 (4)
C3—C4—C5—C62.2 (5)Cl1—C18—C19—C20179.2 (2)
C2—C1—C6—C50.2 (5)C18—C19—C20—C150.2 (4)
C2—C1—C6—C7178.4 (3)C16—C15—C20—C190.8 (4)
C4—C5—C6—C11.7 (5)C14—C15—C20—C19179.8 (2)
C4—C5—C6—C7176.8 (3)O1—C9—N1—C102.3 (4)
C1—C6—C7—C8177.5 (3)C8—C9—N1—C10179.8 (2)
C5—C6—C7—C84.0 (5)C12—C10—N1—C967.6 (3)
C6—C7—C8—C9176.3 (2)C11—C10—N1—C9170.1 (2)
C7—C8—C9—O11.3 (4)O2—C12—N2—C139.9 (4)
C7—C8—C9—N1176.5 (3)C10—C12—N2—C13171.0 (2)
N1—C10—C12—O224.2 (3)N3—C13—N2—C12170.0 (2)
C11—C10—C12—O297.7 (3)S1—C13—N2—C125.7 (3)
N1—C10—C12—N2156.8 (2)N2—C13—N3—N4175.5 (2)
C11—C10—C12—N281.4 (3)S1—C13—N3—N40.5 (3)
N4—C14—C15—C162.3 (4)C15—C14—N4—N3176.1 (2)
S1—C14—C15—C16179.3 (2)S1—C14—N4—N31.1 (3)
N4—C14—C15—C20177.1 (2)C13—N3—N4—C140.4 (3)
S1—C14—C15—C200.1 (3)N3—C13—S1—C140.9 (2)
C20—C15—C16—C171.1 (4)N2—C13—S1—C14175.0 (2)
C14—C15—C16—C17179.5 (2)N4—C14—S1—C131.2 (2)
C15—C16—C17—C180.8 (4)C15—C14—S1—C13176.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.861.942.802 (3)175
C7—H7A···O10.932.582.888 (3)100
C7—H7A···N3ii0.932.543.446 (3)164
C11—H11C···S1iii0.962.773.526 (3)136
C20—H20A···S10.932.693.105 (3)108
C20—H20A···O2iv0.932.483.380 (3)162
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+1/2, z; (iii) x+1, y, z; (iv) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC20H17ClN4O2S
Mr412.89
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)6.6324 (15), 8.575 (2), 34.367 (8)
V3)1954.6 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.41 × 0.18 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14721, 4706, 2807
Rint0.046
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.099, 1.02
No. of reflections4706
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.20
Absolute structureFlack (1983), 1876 Friedel pairs
Absolute structure parameter0.12 (7)

Computer programs: , SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), APEX2 (Bruker, 2004) and publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.861.942.802 (3)174.9
C7—H7A···O10.932.582.888 (3)100.2
C7—H7A···N3ii0.932.543.446 (3)164.4
C11—H11C···S1iii0.962.773.526 (3)136.4
C20—H20A···S10.932.693.105 (3)108.1
C20—H20A···O2iv0.932.483.380 (3)162.2
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+1/2, z; (iii) x+1, y, z; (iv) x1/2, y+3/2, z.
 

Footnotes

Additional correspondence author, e-mail: lishaohua0131@yahoo.com.cn.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationForoumadi, A., Daneshtalab, M. & Shafiee, A. (1999). Arzneim. Forsch. 49, 1035–1038.  CAS Google Scholar
First citationFun, H.-K., Chantrapromma, S., Patil, P. S., Karthikeyan, M. S. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o956–o957.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o950.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLevy, M. & Palmer, A. H. (1942). J. Biol. Chem. 146, 493–495.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, K. S., Ishikawa, Y., Kobayashi, S., Sankawa, U. & Ebizuka, Y. (1992). Phytochemistry, 31, 823–826.  CrossRef CAS Google Scholar
First citationThiruvalluvar, A., Subramanyam, M., Butcher, R. J., Karabasanagouda, T. & Adhikari, A. V. (2008). Acta Cryst. E64, o1263.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTu, G. G., Li, S. H., Huang, H. M., Li, G., Xiong, F., Mai, X., Zhu, H. W., Kuang, B. H. & Xu, W. F. (2008). Bioorg. Med. Chem. 16, 6663–6668.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds