metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[tri­aqua­copper(II)]-μ-pyridine-2,3-di­carboxyl­ato-κ3N,O2:O3] monohydrate]

aCollege of Food and Biological Engineering, Shandong Institute of Light Industry, Jinan 250353, People's Republic of China, and bMaize Research Insitute, Shandong Academy of Agricultural Science, Jinan 250100, People's Republic of China
*Correspondence e-mail: lujianghao001@yahoo.com.cn

(Received 15 June 2008; accepted 7 August 2008; online 6 September 2008)

In the title compound, {[Cu(C7H3NO4)(H2O)3]·H2O}n, the CuII ion is bonded to three water mol­ecules, one N,O-bidentate pyridine-2,3-dicarboxyl­ate dianion and one O-bonded symmetry-generated dianion, resulting in a distorted CuNO5 octa­hedral geometry. The bridging ligand results in an infinite chain. A network of O—H⋯O hydrogen bonds helps to establish the crystal structure.

Related literature

For background, see: Serre et al. (2005[Serre, C., Marrot, J. & Ferey, G. (2005). Inorg. Chem. 44, 654-658.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H3NO4)(H2O)3]·H2O

  • Mr = 300.71

  • Monoclinic, C c

  • a = 8.513 (3) Å

  • b = 17.983 (3) Å

  • c = 7.493 (3) Å

  • β = 114.486 (10)°

  • V = 1043.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.13 mm−1

  • T = 296 (2) K

  • 0.40 × 0.28 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.484, Tmax = 0.652

  • 2686 measured reflections

  • 1322 independent reflections

  • 1310 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.089

  • S = 1.00

  • 1322 reflections

  • 180 parameters

  • 14 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.60 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 290 Friedel pairs

  • Flack parameter: 0.05 (3)

Table 1
Selected bond lengths (Å)

Cu1—O7 2.061 (3)
Cu1—O6 2.068 (3)
Cu1—O3 2.071 (3)
Cu1—O1 2.119 (4)
Cu1—O5 2.178 (5)
Cu1—N1 2.187 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H3W⋯O4i 0.82 (9) 1.93 (8) 2.735 (6) 167 (8)
O5—H4W⋯O6ii 0.82 (2) 2.35 (8) 2.966 (5) 132 (10)
O6—H5W⋯O5iii 0.82 (7) 2.29 (7) 2.966 (5) 140 (9)
O7—H7W⋯O2iv 0.83 (8) 1.90 (9) 2.720 (5) 169 (8)
O7—H8W⋯O2ii 0.83 (8) 2.03 (4) 2.825 (5) 162 (11)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y, z+{\script{1\over 2}}]; (iii) [x, -y, z-{\script{1\over 2}}]; (iv) x, y, z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, carboxylic acids have been widely used as polydentate ligands, which can coordinate to transition or rare earth ions yielding complexes with interesting properties in biological systems (e.g. Serre et al., 2005). Herein, we report the synthesis and structure of the title compound, (I).

As shown in Fig. 1, the CuII ion in (I) is hexacoordinated with five oxygen atoms and one nitrogen atom, exhibiting a slightly distorted octahedral geometry (Table 1). The pyridine-2,3-dicarboxyalto ligand affords the pyridine N and one carboxylato oxygen atom in chelating coordination mode and a symmetry-generated ligand bonds from its carboxylate O-atom. The bridging ligand links neighboring copper(II) ions into a chain (Fig. 2). Extensive hydrogen bonding (Table 2) via hydrogen bonds between carboxylate oxygen atoms of pyridine-2,3-dicarboxyalte and the uncoordinated water molecules or coordinated aqua ligands, giving rise to a three-dimensional network.

Related literature top

For background, see: Serre et al. (2005).

Experimental top

A mixture of copper(II) chloride (0.5 mmol), pyridine-2,3-dicarboxylic acid (1 mmol), sodium hydroxide (1 mmol), H2O (8 ml), and ethanol (8 ml) in a 25 ml Teflon-lined stainless steel autoclave was kept at 423 K for three days. Blue blocks of (I) were obtained after cooling to room temperature with a yield of 16%. Anal calc. for C7H11CuNO8: C 27.93, H 2.99, N 4.66%; found: C 27.89, H 2.92, N 4.63%.

Refinement top

The O-bound H atoms were located in a difference map and their positions were freely refined with a fixed Uiso value. This has led to some extremely short intermolecular H···H contacts and the location of the water H atoms should be regarded as less certain. All the C-bound H atoms were placed in calculated positions with C—H = 0.93Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms. Atoms labeled with i are at the symmetry position (x - 1/2,-y + 1/2,z - 1/2).
[Figure 2] Fig. 2. Part of a polymeric chain in (I).
catena-Poly[[[triaquacopper(II)]-µ-pyridine-2,3-dicarboxylato- κ3N,O2:O3] monohydrate] top
Crystal data top
[Cu(C7H3NO4)(H2O)3]·H2OF(000) = 612
Mr = 300.71Dx = 1.913 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 2692 reflections
a = 8.513 (3) Åθ = 2.9–28.1°
b = 17.983 (3) ŵ = 2.13 mm1
c = 7.493 (3) ÅT = 296 K
β = 114.486 (10)°Block, blue
V = 1043.9 (6) Å30.40 × 0.28 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1322 independent reflections
Radiation source: fine-focus sealed tube1310 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 26.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.484, Tmax = 0.652k = 2222
2686 measured reflectionsl = 49
Refinement top
Refinement on F2Hydrogen site location: difmap and geom
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.079P)2 + 0.0702P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.61 e Å3
1322 reflectionsΔρmin = 0.60 e Å3
180 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
14 restraintsExtinction coefficient: 0.018 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 290 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.05 (3)
Crystal data top
[Cu(C7H3NO4)(H2O)3]·H2OV = 1043.9 (6) Å3
Mr = 300.71Z = 4
Monoclinic, CcMo Kα radiation
a = 8.513 (3) ŵ = 2.13 mm1
b = 17.983 (3) ÅT = 296 K
c = 7.493 (3) Å0.40 × 0.28 × 0.22 mm
β = 114.486 (10)°
Data collection top
Bruker APEXII CCD
diffractometer
1322 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1310 reflections with I > 2σ(I)
Tmin = 0.484, Tmax = 0.652Rint = 0.028
2686 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089Δρmax = 0.61 e Å3
S = 1.00Δρmin = 0.60 e Å3
1322 reflectionsAbsolute structure: Flack (1983), 290 Friedel pairs
180 parametersAbsolute structure parameter: 0.05 (3)
14 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00453 (5)0.118674 (19)0.25189 (5)0.0226 (2)
C10.1893 (6)0.1125 (2)0.2173 (8)0.0257 (10)
C20.0162 (7)0.2776 (2)0.2417 (8)0.0261 (9)
C30.1909 (5)0.2542 (2)0.2398 (6)0.0220 (8)
C40.3188 (5)0.3044 (2)0.2468 (6)0.0224 (8)
C50.4612 (5)0.2816 (2)0.2256 (6)0.0222 (9)
H50.54430.31540.22660.027*
C60.4781 (6)0.2094 (3)0.2034 (7)0.0325 (10)
H60.57470.19220.18780.039*
C70.3554 (7)0.1592 (3)0.2028 (8)0.0350 (10)
H70.37190.10880.18900.042*
N10.2118 (5)0.18178 (19)0.2218 (6)0.0262 (7)
O10.1400 (5)0.0911 (2)0.0470 (5)0.0356 (8)
O20.2392 (5)0.07157 (19)0.3667 (5)0.0363 (7)
O30.0834 (4)0.22671 (17)0.2399 (6)0.0323 (7)
O40.0130 (6)0.34452 (16)0.2387 (9)0.0401 (8)
O50.1420 (5)0.12328 (17)0.5699 (7)0.0311 (9)
O60.1266 (5)0.01799 (18)0.2664 (7)0.0427 (9)
O70.2021 (4)0.07356 (18)0.2898 (5)0.0309 (7)
O80.4601 (7)0.0181 (3)0.4257 (10)0.0777 (18)
H1W0.553 (6)0.004 (6)0.515 (11)0.093*
H2W0.377 (7)0.006 (6)0.451 (14)0.093*
H4W0.105 (10)0.080 (2)0.551 (16)0.093*
H5W0.092 (12)0.008 (5)0.167 (10)0.093*
H6W0.229 (5)0.011 (5)0.340 (12)0.093*
H7W0.214 (15)0.067 (5)0.393 (9)0.093*
H8W0.195 (16)0.034 (3)0.238 (13)0.093*
H3W0.248 (3)0.126 (4)0.620 (19)0.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0221 (3)0.0153 (3)0.0307 (3)0.0014 (2)0.0111 (2)0.0008 (2)
C10.024 (2)0.021 (2)0.033 (3)0.0026 (14)0.013 (2)0.0011 (15)
C20.0229 (19)0.0210 (17)0.0315 (18)0.0045 (18)0.0084 (15)0.0004 (19)
C30.0223 (19)0.0198 (18)0.0229 (18)0.0031 (15)0.0083 (15)0.0014 (14)
C40.0208 (18)0.0218 (19)0.0220 (17)0.0000 (14)0.0064 (15)0.0016 (15)
C50.026 (2)0.0141 (17)0.032 (2)0.0009 (13)0.017 (2)0.0013 (15)
C60.034 (3)0.027 (2)0.042 (3)0.0042 (18)0.022 (2)0.0008 (16)
C70.045 (3)0.0219 (18)0.044 (2)0.0067 (19)0.025 (2)0.0011 (18)
N10.0284 (18)0.0215 (16)0.0293 (17)0.0018 (14)0.0125 (15)0.0001 (14)
O10.0475 (19)0.0275 (18)0.0292 (16)0.0008 (15)0.0133 (15)0.0000 (14)
O20.055 (2)0.0236 (14)0.0343 (16)0.0049 (14)0.0230 (16)0.0069 (13)
O30.0226 (17)0.0253 (16)0.0519 (19)0.0004 (12)0.0185 (14)0.0011 (14)
O40.0274 (17)0.0214 (15)0.073 (2)0.0041 (14)0.0220 (17)0.0029 (19)
O50.0266 (16)0.0281 (19)0.033 (2)0.0011 (11)0.0062 (16)0.0014 (12)
O60.0362 (17)0.0247 (16)0.056 (2)0.0078 (15)0.0077 (15)0.0088 (16)
O70.0313 (16)0.0262 (15)0.0355 (16)0.0074 (13)0.0142 (14)0.0040 (14)
O80.035 (2)0.054 (3)0.108 (4)0.0047 (18)0.006 (3)0.023 (3)
Geometric parameters (Å, º) top
Cu1—O72.061 (3)C4—C1ii1.525 (5)
Cu1—O62.068 (3)C5—C61.325 (6)
Cu1—O32.071 (3)C5—H50.9300
Cu1—O12.119 (4)C6—C71.379 (7)
Cu1—O52.178 (5)C6—H60.9300
Cu1—N12.187 (4)C7—N11.350 (6)
C1—O11.228 (7)C7—H70.9300
C1—O21.258 (6)O5—H4W0.82 (2)
C1—C4i1.525 (5)O5—H3W0.82 (9)
C2—O41.227 (5)O6—H5W0.82 (7)
C2—O31.244 (6)O6—H6W0.83 (7)
C2—C31.552 (6)O7—H7W0.83 (8)
C3—N11.328 (5)O7—H8W0.83 (8)
C3—C41.399 (6)O8—H1W0.84 (8)
C4—C51.349 (6)O8—H2W0.83 (8)
O7—Cu1—O695.00 (16)C3—C4—C1ii123.2 (4)
O7—Cu1—O393.52 (13)C6—C5—C4117.5 (4)
O6—Cu1—O3171.34 (14)C6—C5—H5121.2
O7—Cu1—O184.19 (14)C4—C5—H5121.2
O6—Cu1—O184.83 (16)C5—C6—C7121.3 (5)
O3—Cu1—O197.60 (15)C5—C6—H6119.3
O7—Cu1—O588.09 (15)C7—C6—H6119.3
O6—Cu1—O586.87 (16)N1—C7—C6121.4 (4)
O3—Cu1—O591.87 (14)N1—C7—H7119.3
O1—Cu1—O5168.12 (14)C6—C7—H7119.3
O7—Cu1—N1171.80 (13)C3—N1—C7118.0 (4)
O6—Cu1—N192.89 (17)C3—N1—Cu1110.5 (3)
O3—Cu1—N178.54 (13)C7—N1—Cu1131.3 (3)
O1—Cu1—N198.75 (15)C1—O1—Cu1145.4 (3)
O5—Cu1—N190.13 (15)C2—O3—Cu1117.2 (3)
O1—C1—O2125.8 (4)Cu1—O5—H4W77 (8)
O1—C1—C4i118.0 (4)Cu1—O5—H3W119 (10)
O2—C1—C4i116.1 (4)H4W—O5—H3W114 (4)
O4—C2—O3126.1 (5)Cu1—O6—H5W118 (7)
O4—C2—C3117.0 (5)Cu1—O6—H6W122 (7)
O3—C2—C3116.8 (4)H5W—O6—H6W114 (9)
N1—C3—C4120.1 (4)Cu1—O7—H7W129 (8)
N1—C3—C2115.9 (4)Cu1—O7—H8W92 (8)
C4—C3—C2123.9 (4)H7W—O7—H8W112 (9)
C5—C4—C3121.5 (4)H1W—O8—H2W111 (4)
C5—C4—C1ii115.3 (4)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H3W···O4ii0.82 (9)1.93 (8)2.735 (6)167 (8)
O5—H4W···O6iii0.82 (2)2.35 (8)2.966 (5)132 (10)
O6—H5W···O5iv0.82 (7)2.29 (7)2.966 (5)140 (9)
O7—H7W···O2v0.83 (8)1.90 (9)2.720 (5)169 (8)
O7—H8W···O2iii0.83 (8)2.03 (4)2.825 (5)162 (11)
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x, y, z+1/2; (iv) x, y, z1/2; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C7H3NO4)(H2O)3]·H2O
Mr300.71
Crystal system, space groupMonoclinic, Cc
Temperature (K)296
a, b, c (Å)8.513 (3), 17.983 (3), 7.493 (3)
β (°) 114.486 (10)
V3)1043.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.13
Crystal size (mm)0.40 × 0.28 × 0.22
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.484, 0.652
No. of measured, independent and
observed [I > 2σ(I)] reflections
2686, 1322, 1310
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.089, 1.00
No. of reflections1322
No. of parameters180
No. of restraints14
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.60
Absolute structureFlack (1983), 290 Friedel pairs
Absolute structure parameter0.05 (3)

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SAINT-Plus (Bruker, 2004, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O72.061 (3)Cu1—O12.119 (4)
Cu1—O62.068 (3)Cu1—O52.178 (5)
Cu1—O32.071 (3)Cu1—N12.187 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H3W···O4i0.82 (9)1.93 (8)2.735 (6)167 (8)
O5—H4W···O6ii0.82 (2)2.35 (8)2.966 (5)132 (10)
O6—H5W···O5iii0.82 (7)2.29 (7)2.966 (5)140 (9)
O7—H7W···O2iv0.83 (8)1.90 (9)2.720 (5)169 (8)
O7—H8W···O2ii0.83 (8)2.03 (4)2.825 (5)162 (11)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y, z+1/2; (iii) x, y, z1/2; (iv) x, y, z+1.
 

Acknowledgements

This work is supported by the Natural Science Foundation of Shandong Province (grant Nos. Y2007D39).

References

First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSerre, C., Marrot, J. & Ferey, G. (2005). Inorg. Chem. 44, 654–658.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds