organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-Prop­ylisonicotinohydrazide

aThe First Affiliated Hospital, Harbin Medical University, Harbin 150001, People's Republic of China
*Correspondence e-mail: song_xueming@sina.com

(Received 26 August 2008; accepted 1 September 2008; online 6 September 2008)

In the title compound, C9H11N3O, the crystal structure is stabilized by a bifurcated inter­molecular N—H⋯(N,O) hydrogen bond and a C—H⋯O inter­action, leading to chains of mol­ecules.

Related literature

For background on the medicinal uses of isoniazid (isonicotinic acid hydrazide, INH) and INH hydrazide–hydrazones, see: Fox & Mitchison (1975[Fox, W. & Mitchison, D. A. (1975). Am. Rev. Respir. Dis. 111, 325-352.]); Kucukguzel et al. (2003[Kucukguzel, S. G., Mazi, A., Sahin, F., Ozturk, S. & Stables, J. (2003). Eur. J. Med. Chem. 38, 1005-1013.]). For the synthesis, see: Deng et al. (2005[Deng, Q.-L., Yu, M., Chen, X., Diao, C.-H., Jing, Z.-L. & Fan, Z. (2005). Acta Cryst. E61, o2545-o2546.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11N3O

  • Mr = 177.21

  • Orthorhombic, P c c n

  • a = 13.010 (3) Å

  • b = 17.590 (4) Å

  • c = 8.0000 (16) Å

  • V = 1830.8 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 297 (2) K

  • 0.43 × 0.28 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.981

  • 9110 measured reflections

  • 1634 independent reflections

  • 986 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.145

  • S = 1.00

  • 1634 reflections

  • 125 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.926 (15) 2.172 (19) 3.001 (3) 149 (2)
N2—H2A⋯N3i 0.926 (15) 2.497 (16) 3.268 (2) 140.9 (19)
C9—H9A⋯N3i 0.96 2.58 3.525 (3) 167
Symmetry code: (i) [-x+{\script{3\over 2}}, y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Isoniazid (isonicotinic acid hydrazide, INH) continues to be the most widely used chemotherapeutic agent for the treatment of tuberculosis (Fox & Mitchison, 1975). Some INH hydrazide–hydrazones were reported to have lower toxicity than hydrazides because of the blockage of the –NH2 group (Kucukguzel et al.2003). In this paper, we report the structure of the title compound, (I), (Fig. 1).

The bond lengths and angles for (I) are within their normal ranges (Allen et al., 1987). The dihedral angle between the mean planes on the N1/C1–C5 ring and the O1/N2/N3/C6 grouping is 48.97 (12)°.

As shown in Fig. 2, the crystal structure is stabilized by bifurcated intermolecular N—H···(N,O) hydrogen bonds (Table 1) and C—H···O interactions leading to chains of molecules.

Related literature top

For background on the medicinal uses of isoniazid (isonicotinic acid hydrazide, INH) and INH hydrazide–hydrazones, see: Fox & Mitchison (1975); Kucukguzel et al. (2003). For bond-length data, see: Allen et al. (1987). For the synthesis, see: Deng et al. (2005).

Experimental top

The title compound was synthesized according to the literature method (Deng et al., 2005): acetone (25 mmol) and isonicotinyl hydrazine (22 mmol) were dissolved in anhydrous ethanol (40 ml) and refluxed for 5 h, and a yellow precipitate was obtained, which was recrystalized from ethanol and diethyl ether (1:1 v/v) to yield yellow blocks of (I) after two days in an ice box.

Refinement top

The N-bonded H atom was located in a difference map and freely refined. The C-bonded H atoms were placed in calculated positions with C—H = 0.93–0.96 Å and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms.
[Figure 2] Fig. 2. Part of a chain of molecules of (I) connected by hydrogen bonds (dashed lines).
N'-Propylisonicotinohydrazide top
Crystal data top
C9H11N3OF(000) = 752
Mr = 177.21Dx = 1.286 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 1634 reflections
a = 13.010 (3) Åθ = 2.0–25.1°
b = 17.590 (4) ŵ = 0.09 mm1
c = 8.0000 (16) ÅT = 297 K
V = 1830.8 (6) Å3Block, yellow
Z = 80.43 × 0.28 × 0.22 mm
Data collection top
Bruker APEXII CCD
diffractometer
1634 independent reflections
Radiation source: fine-focus sealed tube986 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1515
Tmin = 0.963, Tmax = 0.981k = 1920
9110 measured reflectionsl = 69
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: difmap (N-H) and geom (C-H)
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.070P)2 + 0.2547P]
where P = (Fo2 + 2Fc2)/3
1634 reflections(Δ/σ)max < 0.001
125 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.14 e Å3
Crystal data top
C9H11N3OV = 1830.8 (6) Å3
Mr = 177.21Z = 8
Orthorhombic, PccnMo Kα radiation
a = 13.010 (3) ŵ = 0.09 mm1
b = 17.590 (4) ÅT = 297 K
c = 8.0000 (16) Å0.43 × 0.28 × 0.22 mm
Data collection top
Bruker APEXII CCD
diffractometer
1634 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
986 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.981Rint = 0.062
9110 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.18 e Å3
1634 reflectionsΔρmin = 0.14 e Å3
125 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5785 (2)0.3888 (2)0.6946 (4)0.0774 (9)
H10.55090.40370.79670.093*
C20.6065 (2)0.44485 (16)0.5836 (3)0.0615 (7)
H20.59750.49590.61020.074*
C30.64780 (16)0.42398 (14)0.4339 (3)0.0475 (6)
C40.65648 (19)0.34815 (15)0.4012 (3)0.0599 (7)
H40.68250.33170.29920.072*
C50.6266 (2)0.29651 (16)0.5193 (4)0.0699 (8)
H50.63380.24510.49450.084*
C60.67852 (18)0.48038 (13)0.3061 (3)0.0493 (6)
C70.84373 (18)0.63336 (14)0.2827 (3)0.0494 (6)
C80.8682 (2)0.69467 (16)0.1616 (4)0.0771 (9)
H8A0.81880.69410.07250.116*
H8B0.93580.68660.11680.116*
H8C0.86590.74300.21740.116*
C90.91433 (19)0.62320 (16)0.4257 (3)0.0620 (8)
H9A0.87510.61650.52630.093*
H9B0.95730.66730.43650.093*
H9C0.95650.57920.40730.093*
N10.58839 (18)0.31505 (15)0.6654 (3)0.0767 (8)
N20.73950 (15)0.53574 (12)0.3610 (2)0.0517 (6)
N30.76506 (16)0.59328 (11)0.2493 (2)0.0544 (6)
O10.64977 (13)0.47481 (10)0.1615 (2)0.0676 (6)
H2A0.7650 (17)0.5349 (14)0.4690 (16)0.072 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.092 (2)0.087 (2)0.0534 (18)0.0139 (18)0.0222 (15)0.0038 (16)
C20.0764 (18)0.0595 (17)0.0486 (16)0.0105 (14)0.0130 (13)0.0062 (13)
C30.0441 (14)0.0593 (17)0.0391 (13)0.0091 (11)0.0025 (11)0.0023 (11)
C40.0596 (17)0.0651 (19)0.0552 (17)0.0069 (14)0.0043 (12)0.0020 (14)
C50.0658 (18)0.0616 (18)0.082 (2)0.0076 (14)0.0046 (16)0.0095 (16)
C60.0495 (14)0.0609 (16)0.0375 (14)0.0071 (12)0.0004 (11)0.0039 (12)
C70.0465 (14)0.0565 (16)0.0453 (14)0.0012 (12)0.0043 (11)0.0032 (11)
C80.0697 (18)0.078 (2)0.084 (2)0.0169 (16)0.0030 (16)0.0294 (16)
C90.0562 (15)0.0726 (18)0.0574 (17)0.0112 (13)0.0062 (13)0.0025 (13)
N10.0825 (17)0.078 (2)0.0697 (18)0.0147 (14)0.0044 (13)0.0211 (14)
N20.0602 (13)0.0628 (14)0.0321 (11)0.0156 (11)0.0034 (9)0.0091 (10)
N30.0579 (13)0.0647 (14)0.0406 (12)0.0108 (11)0.0030 (9)0.0147 (10)
O10.0759 (13)0.0883 (14)0.0387 (10)0.0241 (10)0.0097 (8)0.0064 (9)
Geometric parameters (Å, º) top
C1—N11.324 (4)C6—N21.331 (3)
C1—C21.376 (4)C7—N31.271 (3)
C1—H10.9300C7—C81.484 (3)
C2—C31.363 (3)C7—C91.478 (3)
C2—H20.9300C8—H8A0.9600
C3—C41.364 (3)C8—H8B0.9600
C3—C61.480 (3)C8—H8C0.9600
C4—C51.367 (4)C9—H9A0.9600
C4—H40.9300C9—H9B0.9600
C5—N11.312 (4)C9—H9C0.9600
C5—H50.9300N2—N31.391 (2)
C6—O11.220 (3)N2—H2A0.926 (10)
N1—C1—C2124.2 (3)N3—C7—C9126.6 (2)
N1—C1—H1117.9C8—C7—C9117.4 (2)
C2—C1—H1117.9C7—C8—H8A109.5
C3—C2—C1118.6 (3)C7—C8—H8B109.5
C3—C2—H2120.7H8A—C8—H8B109.5
C1—C2—H2120.7C7—C8—H8C109.5
C4—C3—C2117.7 (2)H8A—C8—H8C109.5
C4—C3—C6120.0 (2)H8B—C8—H8C109.5
C2—C3—C6122.2 (2)C7—C9—H9A109.5
C5—C4—C3119.6 (3)C7—C9—H9B109.5
C5—C4—H4120.2H9A—C9—H9B109.5
C3—C4—H4120.2C7—C9—H9C109.5
N1—C5—C4124.0 (3)H9A—C9—H9C109.5
N1—C5—H5118.0H9B—C9—H9C109.5
C4—C5—H5118.0C5—N1—C1116.0 (2)
O1—C6—N2123.7 (2)C6—N2—N3117.57 (19)
O1—C6—C3121.2 (2)C6—N2—H2A120.6 (15)
N2—C6—C3115.1 (2)N3—N2—H2A121.8 (15)
N3—C7—C8116.0 (2)C7—N3—N2117.42 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.93 (2)2.17 (2)3.001 (3)149 (2)
N2—H2A···N3i0.93 (2)2.50 (2)3.268 (2)141 (2)
C9—H9A···N3i0.962.583.525 (3)167
Symmetry code: (i) x+3/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H11N3O
Mr177.21
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)297
a, b, c (Å)13.010 (3), 17.590 (4), 8.0000 (16)
V3)1830.8 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.43 × 0.28 × 0.22
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.963, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
9110, 1634, 986
Rint0.062
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.145, 1.00
No. of reflections1634
No. of parameters125
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.14

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.926 (15)2.172 (19)3.001 (3)149 (2)
N2—H2A···N3i0.926 (15)2.497 (16)3.268 (2)140.9 (19)
C9—H9A···N3i0.962.583.525 (3)167
Symmetry code: (i) x+3/2, y, z+1/2.
 

Acknowledgements

The authors are grateful for financial support from the Natural Science Foundation of Heilongjiang Province (D200672) and the Harbin Science and Technology Key Project (2005AA9CS116-4).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp S1–19.  Google Scholar
First citationBruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, Q.-L., Yu, M., Chen, X., Diao, C.-H., Jing, Z.-L. & Fan, Z. (2005). Acta Cryst. E61, o2545–o2546.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFox, W. & Mitchison, D. A. (1975). Am. Rev. Respir. Dis. 111, 325–352.  CAS PubMed Web of Science Google Scholar
First citationKucukguzel, S. G., Mazi, A., Sahin, F., Ozturk, S. & Stables, J. (2003). Eur. J. Med. Chem. 38, 1005–1013.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds