metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4,4′-Di­methyl-2,2′-bi­pyridine-κ2N,N′)di­iodidomercury(II)

aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, and bDepartment of Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran
*Correspondence e-mail: v_amani2002@yahoo.com

(Received 5 September 2008; accepted 8 September 2008; online 13 September 2008)

In the mol­ecule of the title compound, [HgI2(C12H12N2)], the HgII atom is four-coordinated in a distorted tetra­hedral configuration by two N atoms from the 4,4′-dimethyl-2,2′-bipyridine ligand and by two I atoms. There is a ππ contact between the pyridine rings [centroid–centroid distance = 3.775 (6) Å].

Related literature

For related literature, see: Khalighi et al. (2008[Khalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211-m1212.]); Ahmadi et al. (2008[Ahmadi, R., Khalighi, A., Kalateh, K., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1233.]); Khavasi et al. (2008[Khavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848-1854.]); Freire et al. (1999[Freire, E., Baggio, S., Baggio, R. & Suescun, L. (1999). J. Chem. Crystallogr. 29, 825-830.]); Chen et al. (2006[Chen, W. T., Wang, M. S., Liu, X., Guo, G. C. & Huang, J. S. (2006). Cryst. Growth Des. 6, 2289-2300.]); Htoon & Ladd (1976[Htoon, S. & Ladd, M. F. C. (1976). J. Cryst. Mol. Struct. 6, 55-58.]).

[Scheme 1]

Experimental

Crystal data
  • [HgI2(C12H12N2)]

  • Mr = 638.63

  • Triclinic, [P \overline 1]

  • a = 8.4214 (9) Å

  • b = 9.8391 (10) Å

  • c = 10.2983 (10) Å

  • α = 69.383 (8)°

  • β = 88.448 (8)°

  • γ = 74.670 (8)°

  • V = 768.18 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 14.02 mm−1

  • T = 298 (2) K

  • 0.38 × 0.25 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS, Madison, Wisconsin, USA.]) Tmin = 0.022, Tmax = 0.183

  • 8874 measured reflections

  • 4123 independent reflections

  • 3467 reflections with I > 2σ(I)

  • Rint = 0.091

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.159

  • S = 0.95

  • 4123 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 1.95 e Å−3

  • Δρmin = −1.38 e Å−3

Table 1
Selected geometric parameters (Å, °)

Hg1—I1 2.6671 (9)
Hg1—I2 2.6885 (8)
N1—Hg1 2.442 (8)
N2—Hg1 2.402 (10)
I1—Hg1—I2 132.56 (3)
N1—Hg1—I1 111.9 (2)
N1—Hg1—I2 92.87 (19)
N2—Hg1—N1 67.3 (3)
N2—Hg1—I1 104.9 (2)
N2—Hg1—I2 122.2 (2)

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently, we reported the syntheses and crystal structures of [Zn(5,5'-dmbpy)Cl2], (II), (Khalighi et al., 2008), [Cd(5,5'-dmbpy)(µ-Cl)2]n, (III), (Ahmadi et al., 2008) and {[HgCl(dm4bt)]2(µ-Cl)2}, (IV), (Khavasi et al., 2008) [where 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine and dm4bt is 2,2'-dimethyl-4,4' -bithiazole]. There are several HgII complexes, with formula, [HgI2(N-N)], such as [HgI2(bipy)], (V), [HgI2(phen)], (VI), [HgI2(2,9-dmphen)], (VII), (Freire et al., 1999), [HgI2(bipy)][HgI2], (VIII), (Chen et al., 2006) and [HgI2(TMDA)], (IX), (Htoon & Ladd, 1976) [where bipy is 2,2'-bipyridine, phen is 1,10-phenanthroline, dmphen is 2,9-dimethyl-1,10-phenanthroline and TMDA is tetramethylethylenediamine] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

In the title compound, (I), (Fig. 1), the HgII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from 4,4'-dimethyl-2,2'-bipyridine and two I atoms. The Hg—I and Hg—N bond lengths and angles (Table 1) are within normal ranges, as in (V) and (VI).

In the crystal structure, the ππ contact (Fig. 2) between the pyridine rings, Cg2···Cg3i [symmetry code: (i) 1 - x, -y, -z, where Cg2 and Cg3 are the centroids of the rings (N1/C1–C3/C5/C6) and (N2/C7–C9/C11/C12), respectively] may stabilize the structure, with centroid–centroid distance of 3.775 (6) Å.

Related literature top

For related literature, see: Khalighi et al. (2008); Ahmadi et al. (2008); Khavasi et al. (2008); Freire et al. (1999); Chen et al. (2006); Htoon & Ladd (1976).

Experimental top

For the preparation of the title compound, (I), a solution of 4,4'-dimethyl-2,2'-bipyridine (0.25 g, 1.33 mmol) in methanol (20 ml) was added to a solution of HgI2 (0.61 g, 1.33 mmol) in acetonitrile (50 ml) and the resulting colorless solution was stirred for 20 min at room temperature, and then it was left to evaporate slowly. After one week, colorless block crystals of (I) were isolated (yield; 0.61 g, 71.8%).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound.
(4,4'-Dimethyl-2,2'-bipyridine-κ2N,N')diiodidomercury(II) top
Crystal data top
[HgI2(C12H12N2)]Z = 2
Mr = 638.63F(000) = 568
Triclinic, P1Dx = 2.761 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4214 (9) ÅCell parameters from 2145 reflections
b = 9.8391 (10) Åθ = 2.1–29.2°
c = 10.2983 (10) ŵ = 14.02 mm1
α = 69.383 (8)°T = 298 K
β = 88.448 (8)°Block, colourless
γ = 74.670 (8)°0.38 × 0.25 × 0.12 mm
V = 768.18 (14) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4123 independent reflections
Radiation source: fine-focus sealed tube3467 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
ϕ and ω scansθmax = 29.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1111
Tmin = 0.022, Tmax = 0.183k = 1313
8874 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.108P)2 + 1.3499P]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.002
4123 reflectionsΔρmax = 1.95 e Å3
155 parametersΔρmin = 1.38 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 1998), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0071 (13)
Crystal data top
[HgI2(C12H12N2)]γ = 74.670 (8)°
Mr = 638.63V = 768.18 (14) Å3
Triclinic, P1Z = 2
a = 8.4214 (9) ÅMo Kα radiation
b = 9.8391 (10) ŵ = 14.02 mm1
c = 10.2983 (10) ÅT = 298 K
α = 69.383 (8)°0.38 × 0.25 × 0.12 mm
β = 88.448 (8)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4123 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
3467 reflections with I > 2σ(I)
Tmin = 0.022, Tmax = 0.183Rint = 0.091
8874 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 0.95Δρmax = 1.95 e Å3
4123 reflectionsΔρmin = 1.38 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.31760 (5)0.15247 (5)0.30109 (4)0.05970 (19)
I10.03155 (9)0.31134 (10)0.35551 (9)0.0704 (2)
I20.63357 (8)0.13618 (9)0.35681 (7)0.0594 (2)
N10.3481 (10)0.2223 (10)0.0514 (8)0.0520 (16)
N20.2438 (12)0.0160 (12)0.2073 (9)0.0595 (19)
C10.3943 (12)0.3461 (12)0.0232 (12)0.058 (2)
H10.42090.40420.02270.069*
C20.4037 (14)0.3905 (12)0.1657 (13)0.064 (3)
H20.43740.47630.21410.077*
C30.3630 (12)0.3066 (10)0.2355 (10)0.053 (2)
C40.368 (2)0.3537 (19)0.3901 (13)0.080 (4)
H4A0.26070.37010.43130.096*
H4B0.44600.27580.41270.096*
H4C0.40150.44540.42560.096*
C50.3166 (12)0.1780 (10)0.1574 (9)0.0512 (18)
H50.29010.11780.20090.061*
C60.3098 (10)0.1393 (10)0.0149 (9)0.0461 (16)
C70.2537 (10)0.0050 (9)0.0721 (9)0.0438 (15)
C80.2150 (11)0.0932 (10)0.0177 (10)0.0488 (17)
H80.22600.07770.07620.059*
C90.1602 (11)0.2137 (10)0.1003 (11)0.0525 (19)
C100.1200 (14)0.3201 (12)0.0393 (13)0.065 (2)
H10A0.21700.36700.00340.079*
H10B0.03480.26480.03460.079*
H10C0.08250.39620.11030.079*
C110.1411 (15)0.2305 (14)0.2394 (12)0.065 (3)
H110.10040.30780.29810.078*
C120.1831 (16)0.1319 (15)0.2875 (11)0.066 (3)
H120.16980.14380.38050.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0532 (2)0.0783 (3)0.0614 (3)0.02592 (18)0.01400 (15)0.0362 (2)
I10.0537 (4)0.0824 (5)0.0729 (4)0.0159 (3)0.0167 (3)0.0280 (4)
I20.0539 (3)0.0771 (4)0.0543 (3)0.0294 (3)0.0096 (2)0.0241 (3)
N10.056 (4)0.058 (4)0.049 (3)0.022 (3)0.010 (3)0.022 (3)
N20.063 (5)0.077 (5)0.047 (4)0.029 (4)0.011 (3)0.026 (4)
C10.054 (5)0.052 (5)0.074 (6)0.023 (4)0.005 (4)0.025 (4)
C20.061 (5)0.047 (5)0.079 (7)0.021 (4)0.010 (5)0.013 (4)
C30.054 (5)0.044 (4)0.056 (5)0.013 (3)0.006 (4)0.012 (3)
C40.089 (9)0.089 (9)0.056 (5)0.033 (7)0.013 (5)0.013 (6)
C50.057 (5)0.048 (4)0.048 (4)0.015 (4)0.009 (3)0.016 (3)
C60.041 (4)0.044 (4)0.052 (4)0.011 (3)0.013 (3)0.017 (3)
C70.039 (3)0.042 (3)0.048 (4)0.010 (3)0.008 (3)0.016 (3)
C80.047 (4)0.048 (4)0.053 (4)0.014 (3)0.012 (3)0.020 (3)
C90.043 (4)0.048 (4)0.061 (5)0.012 (3)0.004 (3)0.014 (3)
C100.067 (5)0.049 (5)0.078 (6)0.014 (4)0.010 (5)0.021 (4)
C110.071 (6)0.070 (6)0.060 (5)0.040 (5)0.007 (5)0.013 (5)
C120.075 (7)0.079 (7)0.050 (4)0.040 (5)0.015 (4)0.017 (4)
Geometric parameters (Å, º) top
Hg1—I12.6671 (9)C6—N11.334 (12)
Hg1—I22.6885 (8)C6—C71.498 (12)
N1—Hg12.442 (8)C7—N21.337 (12)
N2—Hg12.402 (10)C7—C81.383 (13)
C1—N11.342 (13)C8—C91.378 (13)
C1—C21.382 (17)C8—H80.9300
C1—H10.9300C9—C111.392 (16)
C2—C31.377 (17)C9—C101.506 (16)
C2—H20.9300C10—H10A0.9600
C3—C51.389 (13)C10—H10B0.9600
C3—C41.497 (16)C10—H10C0.9600
C4—H4A0.9600C11—C121.357 (18)
C4—H4B0.9600C11—H110.9300
C4—H4C0.9600C12—N21.366 (15)
C5—C61.384 (12)C12—H120.9300
C5—H50.9300
I1—Hg1—I2132.56 (3)C6—C5—C3120.2 (9)
N1—Hg1—I1111.9 (2)C6—C5—H5119.7
N1—Hg1—I292.87 (19)C3—C5—H5120.2
N2—Hg1—N167.3 (3)N1—C6—C5121.6 (8)
N2—Hg1—I1104.9 (2)N1—C6—C7116.6 (8)
N2—Hg1—I2122.2 (2)C5—C6—C7121.7 (8)
C1—N1—Hg1122.2 (7)N2—C7—C8121.2 (8)
C6—N1—Hg1119.2 (6)N2—C7—C6116.1 (8)
C6—N1—C1118.6 (8)C8—C7—C6122.6 (8)
C7—N2—Hg1120.8 (7)C9—C8—C7121.0 (9)
C7—N2—C12117.4 (9)C9—C8—H8119.4
C12—N2—Hg1121.7 (7)C7—C8—H8119.6
N1—C1—C2122.5 (10)C8—C9—C11117.7 (10)
N1—C1—H1118.7C8—C9—C10120.2 (10)
C2—C1—H1118.8C11—C9—C10122.1 (9)
C3—C2—C1119.5 (10)C9—C10—H10A109.2
C3—C2—H2120.1C9—C10—H10B109.6
C1—C2—H2120.4H10A—C10—H10B109.5
C2—C3—C5117.6 (10)C9—C10—H10C109.6
C2—C3—C4120.8 (11)H10A—C10—H10C109.5
C5—C3—C4121.6 (11)H10B—C10—H10C109.5
C3—C4—H4A109.3C12—C11—C9118.7 (10)
C3—C4—H4B109.5C12—C11—H11120.7
H4A—C4—H4B109.5C9—C11—H11120.6
C3—C4—H4C109.6N2—C12—C11123.8 (10)
H4A—C4—H4C109.5N2—C12—H12118.1
H4B—C4—H4C109.5C11—C12—H12118.2
C1—N1—Hg1—I179.7 (8)C5—C6—N1—Hg1176.7 (6)
C1—N1—Hg1—I258.9 (7)C7—C6—N1—Hg11.4 (10)
C1—N1—Hg1—N2177.2 (8)C5—C6—N1—C10.1 (13)
C6—N1—Hg1—I196.9 (7)C7—C6—N1—C1178.1 (8)
C6—N1—Hg1—I2124.5 (7)N1—C6—C7—N21.6 (11)
C6—N1—Hg1—N20.6 (7)C5—C6—C7—N2176.5 (9)
C7—N2—Hg1—I1108.1 (7)N1—C6—C7—C8178.0 (8)
C7—N2—Hg1—I278.2 (8)C5—C6—C7—C84.0 (12)
C7—N2—Hg1—N10.2 (7)C6—C7—N2—Hg11.0 (10)
C12—N2—Hg1—I168.7 (9)C8—C7—N2—Hg1178.6 (6)
C12—N2—Hg1—I2104.9 (9)C6—C7—N2—C12176.0 (9)
C12—N2—Hg1—N1176.6 (10)C8—C7—N2—C124.5 (14)
C2—C1—N1—C60.1 (15)N2—C7—C8—C91.9 (13)
C2—C1—N1—Hg1176.7 (8)C6—C7—C8—C9178.6 (8)
N1—C1—C2—C30.7 (16)C7—C8—C9—C111.7 (13)
C1—C2—C3—C51.2 (16)C7—C8—C9—C10179.5 (8)
C1—C2—C3—C4178.6 (11)C8—C9—C11—C122.5 (16)
C2—C3—C5—C61.1 (14)C10—C9—C11—C12178.7 (11)
C4—C3—C5—C6178.7 (10)C9—C11—C12—N20.1 (19)
C3—C5—C6—N10.5 (14)C11—C12—N2—Hg1179.4 (10)
C3—C5—C6—C7177.4 (8)C11—C12—N2—C73.6 (18)

Experimental details

Crystal data
Chemical formula[HgI2(C12H12N2)]
Mr638.63
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.4214 (9), 9.8391 (10), 10.2983 (10)
α, β, γ (°)69.383 (8), 88.448 (8), 74.670 (8)
V3)768.18 (14)
Z2
Radiation typeMo Kα
µ (mm1)14.02
Crystal size (mm)0.38 × 0.25 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.022, 0.183
No. of measured, independent and
observed [I > 2σ(I)] reflections
8874, 4123, 3467
Rint0.091
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.159, 0.95
No. of reflections4123
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.95, 1.38

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008, ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Hg1—I12.6671 (9)N1—Hg12.442 (8)
Hg1—I22.6885 (8)N2—Hg12.402 (10)
I1—Hg1—I2132.56 (3)N2—Hg1—N167.3 (3)
N1—Hg1—I1111.9 (2)N2—Hg1—I1104.9 (2)
N1—Hg1—I292.87 (19)N2—Hg1—I2122.2 (2)
 

Acknowledgements

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

References

First citationAhmadi, R., Khalighi, A., Kalateh, K., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1233.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, W. T., Wang, M. S., Liu, X., Guo, G. C. & Huang, J. S. (2006). Cryst. Growth Des. 6, 2289–2300.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFreire, E., Baggio, S., Baggio, R. & Suescun, L. (1999). J. Chem. Crystallogr. 29, 825–830.  Web of Science CSD CrossRef CAS Google Scholar
First citationHtoon, S. & Ladd, M. F. C. (1976). J. Cryst. Mol. Struct. 6, 55–58.  CSD CrossRef CAS Web of Science Google Scholar
First citationKhalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211–m1212.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKhavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848–1854.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds