metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5,5′-Di­methyl-2,2′-bi­pyridine-κ2N,N′)di­iodidomercury(II)

aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, bDepartment of Chemistry, Islamic Azad University, Kazeroon Branch, Kazeroon, Fars, Iran, cDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, and dDepartment of Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran
*Correspondence e-mail: v_amani2002@yahoo.com

(Received 13 September 2008; accepted 15 September 2008; online 20 September 2008)

In the mol­ecule of the title compound, [HgI2(C12H12N2)], the HgII atom is four-coordinated in a distorted tetra­hedral configuration by two N atoms from 5,5′-dimethyl-2,2′-bipyridine and two I atoms. There is a ππ contact between pyridine rings of adjacent molecules [centroid–centroid distance = 3.723 (5) Å].

Related literature

For related literature, see: Ahmadi, Kalateh et al. (2008[Ahmadi, R., Kalateh, K., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1266.]); Ahmadi, Khalighi et al. (2008[Ahmadi, R., Khalighi, A., Kalateh, K., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1233.]); Chen et al. (2006[Chen, W. T., Wang, M. S., Liu, X., Guo, G. C. & Huang, J. S. (2006). Cryst. Growth Des. 6, 2289-2300.]); Freire et al. (1999[Freire, E., Baggio, S., Baggio, R. & Suescun, L. (1999). J. Chem. Crystallogr. 29, 825-830.]); Htoon & Ladd (1976[Htoon, S. & Ladd, M. F. C. (1976). J. Cryst. Mol. Struct. 6, 55-58.]); Khalighi et al. (2008[Khalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211-m1212.]); Khavasi et al. (2008[Khavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848-1854.]); Yousefi, Khalighi, et al. (2008[Yousefi, M., Khalighi, A., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1284-m1285.]); Yousefi, Tadayon Pour et al. (2008[Yousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.]).

[Scheme 1]

Experimental

Crystal data
  • [HgI2(C12H12N2)]

  • Mr = 638.63

  • Orthorhombic, P b c a

  • a = 15.0325 (8) Å

  • b = 15.0654 (8) Å

  • c = 14.0579 (10) Å

  • V = 3183.7 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 13.53 mm−1

  • T = 298 (2) K

  • 0.35 × 0.31 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: numerical [shape of crystal determined optically (X-SHAPE and X-RED32; Stoe & Cie (2005)[Stoe & Cie (2005). X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]] Tmin = 0.015, Tmax = 0.075

  • 23007 measured reflections

  • 4306 independent reflections

  • 3418 reflections with I > 2σ(I)

  • Rint = 0.083

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.124

  • S = 1.19

  • 4306 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 1.44 e Å−3

  • Δρmin = −1.51 e Å−3

Table 1
Selected geometric parameters (Å, °)

Hg1—I1 2.6587 (9)
Hg1—I2 2.6684 (8)
Hg1—N1 2.377 (7)
Hg1—N2 2.389 (6)
I1—Hg1—I2 129.89 (3)
N1—Hg1—I1 113.59 (16)
N1—Hg1—N2 69.7 (2)
N1—Hg1—I2 106.53 (16)
N2—Hg1—I1 107.15 (15)
N2—Hg1—I2 114.22 (15)

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently, we reported the syntheses and crystal structures of [Zn(5,5'-dmbpy)Cl2], (II), (Khalighi et al., 2008), [Zn(6-mbpy)Cl2], (III), (Ahmadi, Kalateh et al., 2008), [Cd(5,5'-dmbpy)(µ-Cl)2]n, (IV), (Ahmadi, Khalighi et al., 2008), [Cu(5,5'-dcbpy)(en)(H2O)2].2.5H2O, (V), (Yousefi, Khalighi et al., 2008) and {[HgCl(dm4bt)]2(µ-Cl)2}, (VI), (Khavasi et al., 2008) [where 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine, 6-mbpy is 6-methyl-2,2' -bipyridine, 5,5'-dcbpy is 2,2'-bipyridine-5,5'-dicarboxylate, en is ethylene- diamine and dm4bt is 2,2'-dimethyl-4,4'-bithiazole]. There are several HgII complexes, with formula, [HgI2(N—N)], such as [HgI2(bipy)], (VII), [HgI2(phen)], (VIII) and [HgI2(2,9-dmphen)], (IX), (Freire et al., 1999), [HgI2(bipy)][HgI2], (X), (Chen et al., 2006), [HgI2(4,4'-dmbpy)], (XI), (Yousefi, Tadayon Pour et al., 2008) and [HgI2(TMDA)], (XII), (Htoon & Ladd, 1976) [where bipy is 2,2'-bipyridine, phen is 1,10-phenanthroline, dmphen is 2,9-dimethyl-1,10-phenanthroline, 4,4'-dmbpy is 4,4'-dimethyl-2,2'-bipyridine and TMDA is tetramethylethylene- diamine] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

In the title compound, (Fig. 1), the HgII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from 5,5'-dimethyl-2,2'-bi- pyridine and two I atoms. The Hg—I and Hg—N bond lengths and angles (Table 1) are within normal ranges, as in (VII), (VIII) and (XI).

In the crystal structure, the π-π contact (Fig. 2) between the pyridine rings, Cg2···Cg3i [symmetry code: (i) x, 1 - y, 1 - z, where Cg2 and Cg3 are centroids of the rings (N1/C1/C2/C4-C6) and (N2/C7-C10/C12), respectively] may stabilize the structure, with centroid-centroid distance of 3.723 (5) Å.

Related literature top

For related literature, see: Ahmadi, Kalateh et al. (2008); Ahmadi, Khalighi et al. (2008); Chen et al. (2006); Freire et al. (1999); Htoon & Ladd (1976); Khalighi et al. (2008); Khavasi et al. (2008); Yousefi, Khalighi, et al. (2008); Yousefi, Tadayon Pour et al. (2008).

Experimental top

For the preparation of the title compound, (I), a solution of 5,5'-dimethyl -2,2'-bipyridine (0.25 g, 1.33 mmol) in methanol (10 ml) was added to a solution of HgI2 (0.61 g, 1.33 mmol) in methanol (5 ml) at room temperature. The suitable crystals for X-ray analysis were isolated after one week by methanol diffusion to a colorless solution in DMSO (yield; 0.62 g, 72.9%).

Refinement top

H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound.
(5,5'-Dimethyl-2,2'-bipyridine-κ2N,N')diiodidomercury(II) top
Crystal data top
[HgI2(C12H12N2)]F(000) = 2272
Mr = 638.63Dx = 2.665 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1768 reflections
a = 15.0325 (8) Åθ = 2.4–29.3°
b = 15.0654 (8) ŵ = 13.53 mm1
c = 14.0579 (10) ÅT = 298 K
V = 3183.7 (3) Å3Prism, colorless
Z = 80.35 × 0.31 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4306 independent reflections
Radiation source: fine-focus sealed tube3418 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
ϕ and ω scansθmax = 29.3°, θmin = 2.4°
Absorption correction: numerical
shape of crystal determined optically (X-SHAPE and X-RED32; Stoe& Cie, 2005)
h = 2019
Tmin = 0.015, Tmax = 0.075k = 2017
23007 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0347P)2 + 17.4498P]
where P = (Fo2 + 2Fc2)/3
4306 reflections(Δ/σ)max = 0.010
154 parametersΔρmax = 1.44 e Å3
0 restraintsΔρmin = 1.51 e Å3
Crystal data top
[HgI2(C12H12N2)]V = 3183.7 (3) Å3
Mr = 638.63Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.0325 (8) ŵ = 13.53 mm1
b = 15.0654 (8) ÅT = 298 K
c = 14.0579 (10) Å0.35 × 0.31 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4306 independent reflections
Absorption correction: numerical
shape of crystal determined optically (X-SHAPE and X-RED32; Stoe& Cie, 2005)
3418 reflections with I > 2σ(I)
Tmin = 0.015, Tmax = 0.075Rint = 0.083
23007 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0347P)2 + 17.4498P]
where P = (Fo2 + 2Fc2)/3
4306 reflectionsΔρmax = 1.44 e Å3
154 parametersΔρmin = 1.51 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.11964 (2)0.71065 (2)0.60202 (3)0.05197 (12)
I10.00810 (7)0.80915 (5)0.50004 (7)0.0859 (3)
I20.25140 (5)0.76000 (5)0.71769 (6)0.0687 (2)
N10.1696 (4)0.5812 (5)0.5214 (5)0.0403 (14)
N20.0387 (4)0.5836 (4)0.6554 (5)0.0381 (13)
C10.2371 (5)0.5833 (6)0.4598 (6)0.0463 (18)
H10.26330.63770.44600.056*
C20.2697 (6)0.5082 (7)0.4155 (6)0.049 (2)
C30.3485 (8)0.5156 (9)0.3481 (9)0.077 (3)
H3A0.39860.53990.38160.093*
H3B0.33330.55380.29590.093*
H3C0.36350.45780.32430.093*
C40.2299 (7)0.4279 (7)0.4391 (8)0.063 (3)
H40.25060.37550.41210.076*
C50.1604 (7)0.4257 (6)0.5019 (7)0.053 (2)
H50.13240.37230.51620.063*
C60.1322 (5)0.5044 (5)0.5440 (5)0.0387 (16)
C70.0586 (5)0.5057 (5)0.6156 (5)0.0378 (15)
C80.0140 (6)0.4291 (6)0.6412 (7)0.054 (2)
H80.02700.37540.61180.065*
C90.0503 (6)0.4341 (6)0.7113 (7)0.054 (2)
H90.08050.38290.72970.065*
C100.0703 (6)0.5135 (6)0.7542 (6)0.0477 (19)
C110.1370 (7)0.5206 (8)0.8337 (8)0.069 (3)
H11A0.18310.56150.81590.083*
H11B0.10780.54170.89010.083*
H11C0.16250.46330.84580.083*
C120.0244 (5)0.5873 (6)0.7226 (6)0.0465 (18)
H120.03790.64220.74920.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0544 (2)0.04113 (17)0.0603 (2)0.00092 (15)0.00422 (17)0.00082 (14)
I10.0978 (6)0.0521 (4)0.1078 (7)0.0131 (4)0.0354 (5)0.0050 (4)
I20.0660 (4)0.0555 (4)0.0845 (5)0.0031 (3)0.0154 (4)0.0110 (3)
N10.039 (3)0.044 (3)0.037 (3)0.001 (3)0.003 (3)0.002 (3)
N20.035 (3)0.039 (3)0.041 (3)0.002 (3)0.000 (3)0.001 (3)
C10.040 (4)0.053 (5)0.046 (4)0.002 (4)0.009 (3)0.006 (4)
C20.041 (4)0.072 (6)0.035 (4)0.012 (4)0.000 (3)0.002 (4)
C30.061 (6)0.098 (9)0.073 (7)0.016 (6)0.029 (6)0.004 (6)
C40.070 (7)0.058 (6)0.062 (6)0.019 (5)0.001 (5)0.020 (5)
C50.058 (5)0.045 (4)0.056 (5)0.003 (4)0.004 (4)0.002 (4)
C60.038 (4)0.038 (4)0.040 (4)0.001 (3)0.004 (3)0.002 (3)
C70.039 (4)0.040 (4)0.035 (4)0.003 (3)0.009 (3)0.001 (3)
C80.057 (5)0.047 (5)0.058 (5)0.009 (4)0.004 (4)0.002 (4)
C90.051 (5)0.051 (5)0.062 (6)0.016 (4)0.003 (4)0.007 (4)
C100.038 (4)0.057 (5)0.048 (5)0.001 (4)0.005 (3)0.010 (4)
C110.059 (6)0.080 (7)0.067 (6)0.001 (5)0.031 (5)0.000 (5)
C120.042 (4)0.048 (4)0.050 (5)0.003 (4)0.009 (4)0.003 (4)
Geometric parameters (Å, º) top
Hg1—I12.6587 (9)C6—N11.325 (10)
Hg1—I22.6684 (8)C6—C71.496 (11)
Hg1—N12.377 (7)C7—N21.335 (10)
Hg1—N22.389 (6)C7—C81.382 (12)
C1—N11.335 (10)C8—C91.384 (14)
C1—C21.380 (13)C8—H80.9300
C1—H10.9300C9—C101.373 (13)
C2—C41.390 (15)C9—H90.9300
C2—C31.521 (13)C10—C121.382 (12)
C3—H3A0.9600C10—C111.505 (13)
C3—H3B0.9600C11—H11A0.9600
C3—H3C0.9600C11—H11B0.9600
C4—C51.368 (14)C11—H11C0.9600
C4—H40.9300C12—N21.339 (10)
C5—C61.392 (11)C12—H120.9300
C5—H50.9300
I1—Hg1—I2129.89 (3)C4—C5—C6119.1 (9)
N1—Hg1—I1113.59 (16)C4—C5—H5120.5
N1—Hg1—N269.7 (2)C6—C5—H5120.5
N1—Hg1—I2106.53 (16)N1—C6—C5120.9 (8)
N2—Hg1—I1107.15 (15)N1—C6—C7117.6 (7)
N2—Hg1—I2114.22 (15)C5—C6—C7121.5 (7)
C1—N1—Hg1122.0 (6)N2—C7—C8121.1 (8)
C6—N1—Hg1117.9 (5)N2—C7—C6117.4 (7)
C6—N1—C1119.9 (7)C8—C7—C6121.5 (7)
C7—N2—Hg1117.3 (5)C7—C8—C9118.7 (9)
C7—N2—C12119.4 (7)C7—C8—H8120.7
C12—N2—Hg1123.3 (5)C9—C8—H8120.7
N1—C1—C2122.9 (9)C10—C9—C8120.8 (8)
N1—C1—H1118.5C10—C9—H9119.6
C2—C1—H1118.5C8—C9—H9119.6
C1—C2—C4116.9 (8)C9—C10—C12116.8 (8)
C1—C2—C3119.9 (10)C9—C10—C11122.3 (9)
C4—C2—C3123.2 (9)C12—C10—C11120.9 (9)
C2—C3—H3A109.5C10—C11—H11A109.5
C2—C3—H3B109.5C10—C11—H11B109.5
H3A—C3—H3B109.5H11A—C11—H11B109.5
C2—C3—H3C109.5C10—C11—H11C109.5
H3A—C3—H3C109.5H11A—C11—H11C109.5
H3B—C3—H3C109.5H11B—C11—H11C109.5
C5—C4—C2120.3 (9)N2—C12—C10123.2 (8)
C5—C4—H4119.8N2—C12—H12118.4
C2—C4—H4119.8C10—C12—H12118.4
I1—Hg1—N1—C182.9 (6)C5—C6—N1—C12.1 (12)
I1—Hg1—N1—C6101.5 (5)C7—C6—N1—C1178.3 (7)
I2—Hg1—N1—C166.4 (6)C5—C6—N1—Hg1177.8 (6)
I2—Hg1—N1—C6109.2 (5)C7—C6—N1—Hg12.6 (9)
N2—Hg1—N1—C1176.7 (7)N1—C6—C7—N23.3 (11)
N2—Hg1—N1—C61.1 (5)C5—C6—C7—N2177.1 (8)
I1—Hg1—N2—C7108.7 (5)N1—C6—C7—C8178.0 (8)
I1—Hg1—N2—C1271.7 (6)C5—C6—C7—C81.6 (12)
I2—Hg1—N2—C7100.3 (5)C8—C7—N2—C121.4 (12)
I2—Hg1—N2—C1279.3 (6)C6—C7—N2—C12177.3 (7)
N1—Hg1—N2—C70.8 (5)C8—C7—N2—Hg1179.0 (6)
N1—Hg1—N2—C12178.9 (7)C6—C7—N2—Hg12.3 (9)
C2—C1—N1—C61.5 (13)N2—C7—C8—C91.9 (13)
C2—C1—N1—Hg1177.0 (6)C6—C7—C8—C9176.7 (8)
N1—C1—C2—C41.1 (13)C7—C8—C9—C100.6 (15)
N1—C1—C2—C3178.3 (9)C8—C9—C10—C121.2 (14)
C1—C2—C4—C51.4 (14)C8—C9—C10—C11177.2 (9)
C3—C2—C4—C5178.5 (10)C9—C10—C12—N21.8 (13)
C2—C4—C5—C62.1 (15)C11—C10—C12—N2176.6 (9)
C4—C5—C6—N12.5 (14)C10—C12—N2—C70.6 (13)
C4—C5—C6—C7178.0 (8)C10—C12—N2—Hg1179.1 (6)

Experimental details

Crystal data
Chemical formula[HgI2(C12H12N2)]
Mr638.63
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)15.0325 (8), 15.0654 (8), 14.0579 (10)
V3)3183.7 (3)
Z8
Radiation typeMo Kα
µ (mm1)13.53
Crystal size (mm)0.35 × 0.31 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionNumerical
shape of crystal determined optically (X-SHAPE and X-RED32; Stoe& Cie, 2005)
Tmin, Tmax0.015, 0.075
No. of measured, independent and
observed [I > 2σ(I)] reflections
23007, 4306, 3418
Rint0.083
(sin θ/λ)max1)0.689
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.124, 1.19
No. of reflections4306
No. of parameters154
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0347P)2 + 17.4498P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.44, 1.51

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Hg1—I12.6587 (9)Hg1—N12.377 (7)
Hg1—I22.6684 (8)Hg1—N22.389 (6)
I1—Hg1—I2129.89 (3)N1—Hg1—I2106.53 (16)
N1—Hg1—I1113.59 (16)N2—Hg1—I1107.15 (15)
N1—Hg1—N269.7 (2)N2—Hg1—I2114.22 (15)
 

Acknowledgements

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

References

First citationAhmadi, R., Kalateh, K., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1266.  Web of Science CSD CrossRef IUCr Journals
First citationAhmadi, R., Khalighi, A., Kalateh, K., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1233.  Web of Science CSD CrossRef IUCr Journals
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationChen, W. T., Wang, M. S., Liu, X., Guo, G. C. & Huang, J. S. (2006). Cryst. Growth Des. 6, 2289–2300.  Web of Science CSD CrossRef CAS
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals
First citationFreire, E., Baggio, S., Baggio, R. & Suescun, L. (1999). J. Chem. Crystallogr. 29, 825–830.  Web of Science CSD CrossRef CAS
First citationHtoon, S. & Ladd, M. F. C. (1976). J. Cryst. Mol. Struct. 6, 55-58.  CSD CrossRef CAS Web of Science
First citationKhalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211–m1212.  Web of Science CSD CrossRef CAS IUCr Journals
First citationKhavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848–1854.  Web of Science CSD CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationStoe & Cie (2005). X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.
First citationYousefi, M., Khalighi, A., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1284–m1285.  Web of Science CSD CrossRef IUCr Journals
First citationYousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.  Web of Science CSD CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds