metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1264-m1265

Bis(di­ethyl­enetri­amine-κ3N,N′,N′′)nickel(II) bis­­(1,2-di­cyanoethene-1,2-di­thiolato-κ2S,S′)nickel(II)

aSchool of Chemistry & Chemical Technology, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: Zhanglf@sdu.edu.cn

(Received 20 August 2008; accepted 8 September 2008; online 13 September 2008)

The title compound, [Ni(C4H13N3)2][Ni(C4N2S2)2], has been synthesized by the reaction of Ni(ClO4)2·6H2O, diethyl­enetriamine (deta) and Na2[Ni(mnt)2] [mnt = maleonitrile­dithiol­ate(2-)] in methanol. The structure is composed of a [Ni(deta)2]2+ cation and a [Ni(mnt)2]2− anion. The coordination geometry of the NiII ion in the cation is slightly distorted octa­hedral, defined by six N atoms from two deta ligands, while the NiII ion in the anion is four-coordinated by four S atoms from two mnt ligands in a slightly distorted square-planar geometry. The cations and anions are connected by N—H⋯N hydrogen bonds.

Related literature

For related literature, see: Bois et al. (1998[Bois, H., Connelly, N. G., Crossley, J. G., Guillorit, J., Lewis, G. R., Orpen, A. G. & Thornton, P. (1998). J. Chem. Soc. Dalton Trans. pp. 2833-2838.]); Keum et al. (1992[Keum, C., Kim, C., Kim, C., Kwak, H., Kwon, M. & Namgung, H. (1992). Bull. Korean. Chem. Soc. 13, 695-699.]); Miller et al. (1989[Miller, J. S., Calabrese, J. C. & Epstein, A. J. (1989). Inorg. Chem. 28, 4230-4238.]); Ren et al. (2001[Ren, X.-M., Duan, C.-Y., Zhu, H.-Z., Meng, Q.-J., Hu, C.-J., Lu, C.-S. & Liu, Y.-J. (2001). Transition Met. Chem. 26, 295-299.]); Robertson & Cronin (2002[Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93-127.]); Simmons et al. (1962[Simmons, H. E., Vest, R. D., Blomstrom, D. C., Roland, J. R. & Cairns, T. L. (1962). J. Am. Chem. Soc. 84, 4746-4756.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C4H13N3)2][Ni(C4N2S2)2]

  • Mr = 604.13

  • Monoclinic, P 21 /n

  • a = 9.589 (3) Å

  • b = 16.910 (5) Å

  • c = 16.146 (4) Å

  • β = 97.491 (4)°

  • V = 2595.8 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.80 mm−1

  • T = 273 (2) K

  • 0.19 × 0.17 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.717, Tmax = 0.766

  • 13610 measured reflections

  • 5065 independent reflections

  • 3393 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.109

  • S = 0.99

  • 5065 reflections

  • 329 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—S1 2.1739 (12)
Ni1—S2 2.1617 (12)
Ni1—S3 2.1732 (12)
Ni1—S4 2.1658 (12)
Ni2—N5 2.164 (3)
Ni2—N6 2.065 (3)
Ni2—N7 2.150 (4)
Ni2—N8 2.145 (3)
Ni2—N9 2.071 (4)
Ni2—N10 2.151 (3)
S2—Ni1—S4 87.98 (5)
S2—Ni1—S3 168.77 (5)
S4—Ni1—S3 92.72 (4)
S2—Ni1—S1 92.58 (4)
S4—Ni1—S1 170.10 (4)
S3—Ni1—S1 88.65 (4)
N6—Ni2—N9 177.56 (15)
N6—Ni2—N8 98.00 (14)
N9—Ni2—N8 81.73 (14)
N6—Ni2—N7 82.24 (16)
N9—Ni2—N7 95.37 (17)
N8—Ni2—N7 95.96 (15)
N6—Ni2—N10 98.69 (14)
N9—Ni2—N10 81.72 (14)
N8—Ni2—N10 163.04 (16)
N7—Ni2—N10 89.25 (16)
N6—Ni2—N5 81.47 (14)
N9—Ni2—N5 100.96 (15)
N8—Ni2—N5 91.32 (13)
N7—Ni2—N5 162.93 (16)
N10—Ni2—N5 88.20 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯N4i 0.86 (3) 2.30 (4) 3.098 (6) 154 (3)
N5—H5B⋯N2ii 0.86 (3) 2.48 (3) 3.186 (5) 140 (4)
N7—H7A⋯N3iii 0.86 (4) 2.56 (3) 3.207 (7) 134 (3)
N8—H8B⋯N3iii 0.86 (3) 2.48 (4) 3.164 (6) 138 (3)
N9—H9A⋯N1iv 0.86 (2) 2.58 (3) 3.387 (6) 156 (5)
N10—H10C⋯N2ii 0.87 (3) 2.34 (3) 3.198 (5) 173 (5)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x+1, y, z; (iv) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bidentate dithiolate ligands form well square-planar complexes with nickel ions in different oxidation states. Due to their unique properties and potential applications in such areas as conducting and magnetic materials, nearinfrared dyes, nonlinear optical materials (Robertson & Cronin, 2002), the ion-pair complexes formed from [M(mnt)2]n- (M = Ni, Pd, Pt or Cu) and transition metal complex cations have been intensively studied (Bois et al., 1998; Miller et al., 1989; Ren et al., 2001). We report here a new ion-pair complex.

The title compound is composed of a [Ni(deta)2]2+ cation and a [Ni(mnt)2]2- anion [deta = diethylenetriamine; mnt = maleonitriledithiolate(2-)] (Fig. 1). In the cation, the NiII ion has a slightly distorted octahedral geometry, formed by six N atoms from two deta ligands, with the Ni—N distances in a range from 2.065 (3) to 2.164 (3) Å (Table 1), which are consistent with the corresponding values in [Ni(en)3][Ni(mnt)2] (en = ethylenediamine) (Keum et al., 1992). The NiII ion in the anion is four-coordinated by four S atoms and these five atoms form a square plane with a mean deviation of 0.161 (6) Å. The Ni—S bond lengths [2.1617 (12)–2.1739 (12) Å] are also in agreement with those found in the above complex. The cations and anions are connected by N—H···N hydrogen bonds (Table 2).

Related literature top

For related literature, see: Bois et al. (1998); Keum et al. (1992); Miller et al. (1989); Ren et al. (2001); Robertson & Cronin (2002); Simmons et al. (1962).

Experimental top

The synthesis procedure of the title compound was as following: Ni(ClO4)2.6H2O (0.037 g, 0.10 mmol) was dissolved in methanol (10 ml) at room temperature with stirring and then deta (0.021 g, 0.20 mmol) was added. A solution of Na2[Ni(mnt)2] (0.033 g, 0.10 mmol) (Simmons et al., 1962) in methanol (10 ml) was slowly added to the above solution and the mixture was stirred for another 30 min. After filtering, the filtrate was undisturbed for about two weeks at room temperature in air to produce blue crystals suitable for X-ray diffraction (yield 61.75%, 0.037 g). Analysis, calculated for C16H26N10Ni2S4: C 31.81, H 4.34, N 23.19%; found: C 31.76, H 4.31, N 23.24%.

Refinement top

H atoms bound to N atoms were found in difference Fourier maps and refined isotropically, with a restraint of N—H = 0.86 (1) Å. H atoms bound to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
Bis(diethylenetriamine-κ3N,N',N'')nickel(II) bis(1,2-dicyanoethene-1,2-dithiolato-κ2S,S')nickel(II) top
Crystal data top
[Ni(C4H13N3)2][Ni(C4N2S2)2]F(000) = 1248
Mr = 604.13Dx = 1.546 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3163 reflections
a = 9.589 (3) Åθ = 2.4–23.8°
b = 16.910 (5) ŵ = 1.80 mm1
c = 16.146 (4) ÅT = 273 K
β = 97.491 (4)°Block, blue
V = 2595.8 (13) Å30.19 × 0.17 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5065 independent reflections
Radiation source: fine-focus sealed tube3393 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.717, Tmax = 0.766k = 2019
13610 measured reflectionsl = 1719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.058P)2]
where P = (Fo2 + 2Fc2)/3
5065 reflections(Δ/σ)max < 0.001
329 parametersΔρmax = 0.86 e Å3
10 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Ni(C4H13N3)2][Ni(C4N2S2)2]V = 2595.8 (13) Å3
Mr = 604.13Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.589 (3) ŵ = 1.80 mm1
b = 16.910 (5) ÅT = 273 K
c = 16.146 (4) Å0.19 × 0.17 × 0.15 mm
β = 97.491 (4)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5065 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3393 reflections with I > 2σ(I)
Tmin = 0.717, Tmax = 0.766Rint = 0.037
13610 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04110 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.86 e Å3
5065 reflectionsΔρmin = 0.26 e Å3
329 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.72467 (5)0.23459 (3)0.01993 (3)0.04722 (16)
Ni20.97276 (5)0.40148 (3)0.25321 (3)0.04194 (15)
S10.78132 (10)0.13475 (6)0.10229 (6)0.0555 (3)
S20.90403 (11)0.21706 (7)0.04639 (7)0.0638 (3)
S30.52234 (11)0.23887 (7)0.06673 (7)0.0598 (3)
S40.68871 (10)0.34610 (6)0.04535 (7)0.0576 (3)
N11.0808 (4)0.0021 (3)0.1686 (3)0.0828 (12)
N21.2281 (4)0.0992 (2)0.0397 (2)0.0727 (11)
N30.1991 (4)0.3603 (3)0.0519 (3)0.0980 (15)
N40.3914 (5)0.4842 (3)0.1113 (3)0.0902 (13)
N50.7588 (4)0.4323 (2)0.2690 (2)0.0532 (8)
N60.8844 (4)0.2901 (2)0.2388 (2)0.0573 (9)
N71.1630 (4)0.3364 (3)0.2450 (3)0.0670 (10)
N80.9396 (4)0.4370 (2)0.1246 (2)0.0551 (9)
N91.0692 (4)0.5111 (2)0.2663 (2)0.0576 (9)
N101.0222 (4)0.4021 (3)0.3870 (2)0.0552 (9)
C10.9425 (4)0.1059 (2)0.0742 (2)0.0487 (9)
C20.9942 (4)0.1410 (2)0.0098 (2)0.0498 (9)
C30.4468 (4)0.3230 (2)0.0193 (2)0.0546 (10)
C40.5168 (4)0.3686 (2)0.0311 (2)0.0532 (10)
C51.0189 (4)0.0466 (3)0.1249 (3)0.0587 (11)
C61.1252 (4)0.1169 (3)0.0162 (2)0.0564 (11)
C70.3083 (5)0.3441 (3)0.0363 (3)0.0676 (12)
C80.4494 (5)0.4331 (3)0.0751 (3)0.0656 (12)
C90.6713 (4)0.3606 (3)0.2543 (3)0.0690 (12)
H9C0.63570.35640.19540.083*
H9B0.59160.36390.28540.083*
C100.7577 (5)0.2887 (3)0.2815 (3)0.0711 (13)
H10A0.78410.28940.34160.085*
H10B0.70390.24100.26680.085*
C110.9946 (5)0.2337 (3)0.2698 (3)0.0759 (14)
H11A0.96340.18020.25630.091*
H11B1.01610.23810.33010.091*
C121.1225 (6)0.2523 (3)0.2293 (3)0.0850 (16)
H12A1.19940.21810.25180.102*
H12B1.10300.24290.16960.102*
C131.0004 (5)0.5157 (3)0.1168 (3)0.0748 (13)
H13A0.94360.54500.07300.090*
H13B1.09440.51060.10130.090*
C141.0069 (5)0.5602 (3)0.1974 (3)0.0748 (13)
H14A1.06270.60780.19450.090*
H14B0.91290.57580.20660.090*
C151.0661 (5)0.5377 (3)0.3519 (3)0.0694 (12)
H15A0.97210.55560.35850.083*
H15B1.13030.58180.36390.083*
C161.1076 (5)0.4719 (3)0.4112 (2)0.0704 (13)
H16A1.20630.45950.41090.084*
H16B1.09430.48790.46740.084*
H8A0.8544 (16)0.441 (2)0.101 (2)0.051 (11)*
H8B0.971 (4)0.4005 (18)0.095 (2)0.073 (15)*
H7A1.219 (4)0.352 (3)0.211 (2)0.090 (17)*
H10C0.944 (3)0.406 (3)0.408 (3)0.091 (17)*
H5A0.727 (5)0.4692 (19)0.235 (2)0.093 (18)*
H6A0.860 (4)0.281 (2)0.1865 (8)0.055 (12)*
H7B1.217 (4)0.341 (3)0.2916 (17)0.12 (2)*
H10D1.066 (6)0.362 (3)0.409 (4)0.16 (3)*
H9A1.1581 (18)0.503 (4)0.267 (4)0.16 (3)*
H5B0.769 (5)0.448 (3)0.3200 (12)0.101 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0377 (3)0.0536 (3)0.0497 (3)0.0057 (2)0.0033 (2)0.0112 (2)
Ni20.0429 (3)0.0502 (3)0.0324 (2)0.0003 (2)0.00373 (19)0.0015 (2)
S10.0412 (5)0.0638 (7)0.0642 (6)0.0081 (5)0.0164 (5)0.0001 (5)
S20.0514 (6)0.0822 (8)0.0599 (6)0.0189 (6)0.0160 (5)0.0104 (6)
S30.0503 (6)0.0652 (7)0.0663 (7)0.0126 (5)0.0161 (5)0.0012 (5)
S40.0451 (6)0.0601 (7)0.0667 (7)0.0028 (5)0.0040 (5)0.0026 (5)
N10.062 (2)0.098 (3)0.093 (3)0.027 (2)0.024 (2)0.027 (2)
N20.055 (2)0.110 (3)0.055 (2)0.029 (2)0.0172 (18)0.016 (2)
N30.078 (3)0.134 (4)0.089 (3)0.048 (3)0.038 (2)0.009 (3)
N40.097 (3)0.094 (3)0.077 (3)0.032 (3)0.000 (2)0.008 (2)
N50.048 (2)0.067 (2)0.044 (2)0.0015 (18)0.0033 (16)0.0034 (19)
N60.067 (2)0.056 (2)0.047 (2)0.0026 (18)0.0011 (18)0.0019 (17)
N70.055 (2)0.087 (3)0.059 (2)0.014 (2)0.008 (2)0.003 (2)
N80.048 (2)0.077 (3)0.0393 (19)0.014 (2)0.0049 (16)0.0003 (18)
N90.065 (2)0.059 (2)0.051 (2)0.0045 (19)0.0138 (17)0.0004 (17)
N100.042 (2)0.087 (3)0.0367 (17)0.009 (2)0.0043 (15)0.0018 (18)
C10.037 (2)0.058 (3)0.051 (2)0.0068 (18)0.0077 (17)0.0086 (19)
C20.037 (2)0.064 (3)0.049 (2)0.0069 (19)0.0053 (17)0.0067 (19)
C30.048 (2)0.068 (3)0.047 (2)0.017 (2)0.0024 (18)0.016 (2)
C40.050 (2)0.058 (3)0.049 (2)0.013 (2)0.0017 (18)0.013 (2)
C50.043 (2)0.073 (3)0.063 (3)0.007 (2)0.020 (2)0.002 (2)
C60.051 (2)0.076 (3)0.043 (2)0.016 (2)0.0078 (18)0.006 (2)
C70.064 (3)0.087 (3)0.053 (3)0.025 (3)0.014 (2)0.003 (2)
C80.063 (3)0.077 (3)0.054 (3)0.018 (2)0.003 (2)0.005 (2)
C90.048 (2)0.092 (4)0.067 (3)0.018 (3)0.006 (2)0.014 (3)
C100.073 (3)0.070 (3)0.071 (3)0.026 (3)0.014 (2)0.002 (2)
C110.093 (4)0.057 (3)0.073 (3)0.009 (3)0.009 (3)0.008 (2)
C120.096 (4)0.072 (4)0.082 (3)0.032 (3)0.005 (3)0.009 (3)
C130.090 (3)0.081 (4)0.056 (3)0.004 (3)0.021 (2)0.023 (2)
C140.087 (4)0.052 (3)0.085 (3)0.001 (2)0.012 (3)0.008 (2)
C150.070 (3)0.067 (3)0.071 (3)0.005 (2)0.010 (2)0.028 (2)
C160.066 (3)0.100 (4)0.045 (2)0.025 (3)0.006 (2)0.013 (2)
Geometric parameters (Å, º) top
Ni1—S12.1739 (12)N9—C151.456 (5)
Ni1—S22.1617 (12)N9—H9A0.86 (3)
Ni1—S32.1732 (12)N10—C161.461 (5)
Ni1—S42.1658 (12)N10—H10C0.87 (3)
Ni2—N52.164 (3)N10—H10D0.85 (6)
Ni2—N62.065 (3)C1—C21.347 (5)
Ni2—N72.150 (4)C1—C51.434 (6)
Ni2—N82.145 (3)C2—C61.434 (5)
Ni2—N92.071 (4)C3—C41.359 (6)
Ni2—N102.151 (3)C3—C71.436 (5)
S1—C11.737 (4)C4—C81.412 (6)
S2—C21.738 (4)C9—C101.505 (6)
S3—C31.730 (4)C9—H9C0.9700
S4—C41.737 (4)C9—H9B0.9700
N1—C51.144 (5)C10—H10A0.9700
N2—C61.143 (5)C10—H10B0.9700
N3—C71.141 (5)C11—C121.497 (7)
N4—C81.146 (5)C11—H11A0.9700
N5—C91.477 (5)C11—H11B0.9700
N5—H5A0.86 (3)C12—H12A0.9700
N5—H5B0.86 (3)C12—H12B0.9700
N6—C111.463 (5)C13—C141.497 (6)
N6—C101.473 (5)C13—H13A0.9700
N6—H6A0.86 (2)C13—H13B0.9700
N7—C121.486 (6)C14—H14A0.9700
N7—H7A0.86 (4)C14—H14B0.9700
N7—H7B0.86 (4)C15—C161.488 (6)
N8—C131.466 (6)C15—H15A0.9700
N8—H8A0.86 (3)C15—H15B0.9700
N8—H8B0.86 (3)C16—H16A0.9700
N9—C141.453 (5)C16—H16B0.9700
S2—Ni1—S487.98 (5)C5—C1—S1117.0 (3)
S2—Ni1—S3168.77 (5)C1—C2—C6121.7 (4)
S4—Ni1—S392.72 (4)C1—C2—S2121.4 (3)
S2—Ni1—S192.58 (4)C6—C2—S2116.9 (3)
S4—Ni1—S1170.10 (4)C4—C3—C7121.0 (4)
S3—Ni1—S188.65 (4)C4—C3—S3121.4 (3)
N6—Ni2—N9177.56 (15)C7—C3—S3117.7 (3)
N6—Ni2—N898.00 (14)C3—C4—C8120.7 (4)
N9—Ni2—N881.73 (14)C3—C4—S4120.5 (3)
N6—Ni2—N782.24 (16)C8—C4—S4118.8 (3)
N9—Ni2—N795.37 (17)N1—C5—C1176.5 (5)
N8—Ni2—N795.96 (15)N2—C6—C2177.4 (4)
N6—Ni2—N1098.69 (14)N3—C7—C3178.2 (5)
N9—Ni2—N1081.72 (14)N4—C8—C4178.1 (5)
N8—Ni2—N10163.04 (16)N5—C9—C10109.7 (3)
N7—Ni2—N1089.25 (16)N5—C9—H9C109.7
N6—Ni2—N581.47 (14)C10—C9—H9C109.7
N9—Ni2—N5100.96 (15)N5—C9—H9B109.7
N8—Ni2—N591.32 (13)C10—C9—H9B109.7
N7—Ni2—N5162.93 (16)H9C—C9—H9B108.2
N10—Ni2—N588.20 (14)N6—C10—C9107.8 (3)
C1—S1—Ni1102.61 (14)N6—C10—H10A110.1
C2—S2—Ni1102.53 (13)C9—C10—H10A110.1
C3—S3—Ni1102.40 (15)N6—C10—H10B110.1
C4—S4—Ni1102.68 (15)C9—C10—H10B110.1
C9—N5—Ni2108.1 (3)H10A—C10—H10B108.5
C9—N5—H5A110 (3)N6—C11—C12108.0 (4)
Ni2—N5—H5A111 (3)N6—C11—H11A110.1
C9—N5—H5B114 (3)C12—C11—H11A110.1
Ni2—N5—H5B101 (3)N6—C11—H11B110.1
H5A—N5—H5B112 (5)C12—C11—H11B110.1
C11—N6—C10115.5 (4)H11A—C11—H11B108.4
C11—N6—Ni2106.8 (3)N7—C12—C11109.7 (4)
C10—N6—Ni2108.3 (3)N7—C12—H12A109.7
C11—N6—H6A108 (3)C11—C12—H12A109.7
C10—N6—H6A109 (3)N7—C12—H12B109.7
Ni2—N6—H6A109 (3)C11—C12—H12B109.7
C12—N7—Ni2107.2 (3)H12A—C12—H12B108.2
C12—N7—H7A110 (3)N8—C13—C14110.7 (3)
Ni2—N7—H7A120 (3)N8—C13—H13A109.5
C12—N7—H7B110 (4)C14—C13—H13A109.5
Ni2—N7—H7B109 (4)N8—C13—H13B109.5
H7A—N7—H7B100 (5)C14—C13—H13B109.5
C13—N8—Ni2109.1 (3)H13A—C13—H13B108.1
C13—N8—H8A105 (3)N9—C14—C13110.2 (4)
Ni2—N8—H8A118 (2)N9—C14—H14A109.6
C13—N8—H8B116 (3)C13—C14—H14A109.6
Ni2—N8—H8B108 (3)N9—C14—H14B109.6
H8A—N8—H8B101 (4)C13—C14—H14B109.6
C14—N9—C15119.5 (4)H14A—C14—H14B108.1
C14—N9—Ni2107.4 (3)N9—C15—C16110.1 (4)
C15—N9—Ni2108.0 (3)N9—C15—H15A109.6
C14—N9—H9A114 (4)C16—C15—H15A109.6
C15—N9—H9A100 (4)N9—C15—H15B109.6
Ni2—N9—H9A107 (5)C16—C15—H15B109.6
C16—N10—Ni2108.4 (3)H15A—C15—H15B108.2
C16—N10—H10C108 (3)N10—C16—C15109.8 (3)
Ni2—N10—H10C108 (3)N10—C16—H16A109.7
C16—N10—H10D108 (5)C15—C16—H16A109.7
Ni2—N10—H10D117 (5)N10—C16—H16B109.7
H10C—N10—H10D107 (5)C15—C16—H16B109.7
C2—C1—C5122.5 (3)H16A—C16—H16B108.2
C2—C1—S1120.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···N4i0.86 (3)2.30 (4)3.098 (6)154 (3)
N5—H5B···N2ii0.86 (3)2.48 (3)3.186 (5)140 (4)
N7—H7A···N3iii0.86 (4)2.56 (3)3.207 (7)134 (3)
N8—H8B···N3iii0.86 (3)2.48 (4)3.164 (6)138 (3)
N9—H9A···N1iv0.86 (2)2.58 (3)3.387 (6)156 (5)
N10—H10C···N2ii0.87 (3)2.34 (3)3.198 (5)173 (5)
Symmetry codes: (i) x+1, y+1, z; (ii) x1/2, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x+5/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C4H13N3)2][Ni(C4N2S2)2]
Mr604.13
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)9.589 (3), 16.910 (5), 16.146 (4)
β (°) 97.491 (4)
V3)2595.8 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.80
Crystal size (mm)0.19 × 0.17 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.717, 0.766
No. of measured, independent and
observed [I > 2σ(I)] reflections
13610, 5065, 3393
Rint0.037
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.109, 0.99
No. of reflections5065
No. of parameters329
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.86, 0.26

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—S12.1739 (12)Ni2—N62.065 (3)
Ni1—S22.1617 (12)Ni2—N72.150 (4)
Ni1—S32.1732 (12)Ni2—N82.145 (3)
Ni1—S42.1658 (12)Ni2—N92.071 (4)
Ni2—N52.164 (3)Ni2—N102.151 (3)
S2—Ni1—S487.98 (5)N8—Ni2—N795.96 (15)
S2—Ni1—S3168.77 (5)N6—Ni2—N1098.69 (14)
S4—Ni1—S392.72 (4)N9—Ni2—N1081.72 (14)
S2—Ni1—S192.58 (4)N8—Ni2—N10163.04 (16)
S4—Ni1—S1170.10 (4)N7—Ni2—N1089.25 (16)
S3—Ni1—S188.65 (4)N6—Ni2—N581.47 (14)
N6—Ni2—N9177.56 (15)N9—Ni2—N5100.96 (15)
N6—Ni2—N898.00 (14)N8—Ni2—N591.32 (13)
N9—Ni2—N881.73 (14)N7—Ni2—N5162.93 (16)
N6—Ni2—N782.24 (16)N10—Ni2—N588.20 (14)
N9—Ni2—N795.37 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···N4i0.86 (3)2.30 (4)3.098 (6)154 (3)
N5—H5B···N2ii0.86 (3)2.48 (3)3.186 (5)140 (4)
N7—H7A···N3iii0.86 (4)2.56 (3)3.207 (7)134 (3)
N8—H8B···N3iii0.86 (3)2.48 (4)3.164 (6)138 (3)
N9—H9A···N1iv0.86 (2)2.58 (3)3.387 (6)156 (5)
N10—H10C···N2ii0.87 (3)2.34 (3)3.198 (5)173 (5)
Symmetry codes: (i) x+1, y+1, z; (ii) x1/2, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x+5/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of China (No. 20701027) and the Postdoctoral Scientific Foundation of China (No. 200704211076).

References

First citationBois, H., Connelly, N. G., Crossley, J. G., Guillorit, J., Lewis, G. R., Orpen, A. G. & Thornton, P. (1998). J. Chem. Soc. Dalton Trans. pp. 2833–2838.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKeum, C., Kim, C., Kim, C., Kwak, H., Kwon, M. & Namgung, H. (1992). Bull. Korean. Chem. Soc. 13, 695–699.  CAS Google Scholar
First citationMiller, J. S., Calabrese, J. C. & Epstein, A. J. (1989). Inorg. Chem. 28, 4230–4238.  CSD CrossRef CAS Web of Science Google Scholar
First citationRen, X.-M., Duan, C.-Y., Zhu, H.-Z., Meng, Q.-J., Hu, C.-J., Lu, C.-S. & Liu, Y.-J. (2001). Transition Met. Chem. 26, 295–299.  Web of Science CSD CrossRef CAS Google Scholar
First citationRobertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93–127.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimmons, H. E., Vest, R. D., Blomstrom, D. C., Roland, J. R. & Cairns, T. L. (1962). J. Am. Chem. Soc. 84, 4746–4756.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1264-m1265
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds