metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-Di­methyl-4,4′-(propane-1,3-di­yl)dipyridinium tetra­bromidocadmate(II)

aThe College of Chemistry, Xiangtan University, Hunan 411105, People's Republic of China, bNational Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China, and cGraduate School of Chinese Academy of Sciences, Beijing 100039, People's Republic of China
*Correspondence e-mail: djcwye@163.com, jwxu@ciac.jl.cn

(Received 29 August 2008; accepted 18 September 2008; online 24 September 2008)

In the cation of the title compound, (C15H20N2)[CdBr4], the dihedral angle between the two pyridine rings is 70.85 (5)°. An inter­molecular ππ inter­action between the pyridine rings [centroid–centroid distance = 3.900 (4) Å] is observed. The CdII atom has a distorted tetra­hedral coordination.

Related literature

For related structures, see: Dou et al. (2007[Dou, Y.-L., Li, Z.-G., Xu, J.-W. & Zhang, W.-X. (2007). Acta Cryst. E63, o1874-o1875.]); Yang et al. (2008[Yang, F., Deng, J.-C., Li, Z.-G. & Xu, J.-W. (2008). Acta Cryst. E64, o253.]).

[Scheme 1]

Experimental

Crystal data
  • (C15H20N2)[CdBr4]

  • Mr = 660.37

  • Monoclinic, P 21 /c

  • a = 15.422 (2) Å

  • b = 15.382 (2) Å

  • c = 8.9885 (14) Å

  • β = 105.171 (3)°

  • V = 2058.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.82 mm−1

  • T = 293 (2) K

  • 0.28 × 0.19 × 0.11 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS, Inc., Madison, Wisconsion, USA.]) Tmin = 0.148, Tmax = 0.379

  • 11428 measured reflections

  • 4042 independent reflections

  • 2181 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.112

  • S = 1.01

  • 4042 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 1.23 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS, Inc., Madison, Wisconsion, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS, Inc., Madison, Wisconsion, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dou et al. (2007) and Yang et al. (2008) have reported crystal structures of two related compounds synthesized by in situ reaction under hydrothermal condition, in which pyridine N atoms were covalently bonded to methyl groups and the counterions were ClO4- and BF4- anions. Here, we report the structure of the title compound, (I), synthesized by the same method, in which the counter-ion is tetrabromocadmate(II).

Compound (I), as shown in Fig. 1, consists of a 1,3-bis(1-methyl-4-pyridinium)propane cation and a tetrabormocadmate anion. As result of the flexible propane chain, the two pyridine rings have seriously torsion with the dihedral angle of 70.85 (5)°. The CdII atom is coordinated by four Br atoms to a tetrahedral divalent anion.

The crystal structure is stabilized by a weak ππ stacking interaction between adjacent pyridine rings, the shortest atom-to-atomi, centroid-centroidi and interplanar distances being 3.678 (4), 3.900 (4) and 3.638 (3) Å, respectively [symmetry code: (i) -x, 1 - y, 1 - z]. The pyridine rings also contact to each other, the shortest atom-to-atomii being 3.621 (3) Å [symmetry code: (ii) x, 3/2 - y, -1/2 + z], which leads to a supramolecular chain (Fig. 2).

Related literature top

For related structures, see: Dou et al. (2007); Yang et al. (2008).

Experimental top

Compound (I) was solvothermally prepared from a reaction mixture of CdBr2 (0.2 mmol), 1,3-bis(4-pyridyl)propane (0.1 mmol), methanol (3 ml) and distilled water (8 ml); the pH value was adjusted to 4.6 with trimethylamine and acetic acid. The mixture was stirred for 20 min at room temperature and then sealed in a Teflon-lined stainless steel autoclave with a 23 ml capacity at 428 K for 72 h. After cooling to room temperature, the filtered solution was slowly evaporates and 7 days later colourless block-shaped crystals were obtained; these were washed with deionized water, filtered, and dried in air (yield 46% based on Cd).

Refinement top

H atoms were placed geometrically (C—H = 0.93–0.97 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C) . The highest residual electron density peak is located at 1.223 (3) Å from Cd atom.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-labeling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A partial packing view of (I) along the c axis. For the sake of clarity, H atoms have been omitted.
1,1'-Dimethyl-4,4'-(propane-1,3-diyl)dipyridinium tetrabromidocadmate(II) top
Crystal data top
(C15H20N2)[CdBr4]F(000) = 1248
Mr = 660.37Dx = 2.131 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1386 reflections
a = 15.422 (2) Åθ = 2.7–19.5°
b = 15.382 (2) ŵ = 8.83 mm1
c = 8.9885 (14) ÅT = 293 K
β = 105.171 (3)°Block, white
V = 2058.0 (5) Å30.28 × 0.19 × 0.11 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
4042 independent reflections
Radiation source: fine-focus sealed tube2181 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ϕ and ω scansθmax = 26.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1918
Tmin = 0.148, Tmax = 0.379k = 1918
11428 measured reflectionsl = 115
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0341P)2 + 0.3024P]
where P = (Fo2 + 2Fc2)/3
4042 reflections(Δ/σ)max = 0.003
201 parametersΔρmax = 1.23 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
(C15H20N2)[CdBr4]V = 2058.0 (5) Å3
Mr = 660.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.422 (2) ŵ = 8.83 mm1
b = 15.382 (2) ÅT = 293 K
c = 8.9885 (14) Å0.28 × 0.19 × 0.11 mm
β = 105.171 (3)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
4042 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2181 reflections with I > 2σ(I)
Tmin = 0.148, Tmax = 0.379Rint = 0.066
11428 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.01Δρmax = 1.23 e Å3
4042 reflectionsΔρmin = 0.42 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.24235 (4)0.02630 (4)0.65224 (8)0.0576 (2)
Br10.36144 (6)0.00463 (5)0.49814 (12)0.0704 (3)
Br20.32230 (7)0.00571 (6)0.94342 (11)0.0768 (3)
Br30.17908 (7)0.18161 (6)0.59855 (12)0.0768 (3)
Br40.11503 (7)0.08446 (7)0.58003 (13)0.0872 (4)
N10.5535 (4)0.7487 (5)0.6414 (8)0.0596 (19)
N20.0832 (5)0.6007 (4)0.4141 (8)0.0561 (18)
C10.6335 (6)0.7530 (6)0.5741 (13)0.090 (3)
H1A0.63350.80770.52270.135*
H1B0.63010.70650.50160.135*
H1C0.68780.74750.65530.135*
C20.5137 (6)0.8200 (5)0.6755 (11)0.069 (3)
H20.53610.87430.65910.083*
C30.4410 (6)0.8150 (5)0.7338 (10)0.064 (2)
H30.41510.86580.75840.077*
C40.4045 (5)0.7344 (5)0.7575 (9)0.051 (2)
C50.4487 (6)0.6626 (5)0.7242 (9)0.058 (2)
H50.42860.60750.74200.070*
C60.5217 (5)0.6701 (5)0.6652 (10)0.064 (2)
H60.54960.62030.64140.077*
C70.3210 (5)0.7281 (5)0.8100 (10)0.061 (2)
H7A0.30590.78500.84260.073*
H7B0.33090.68910.89770.073*
C80.2434 (5)0.6944 (5)0.6807 (10)0.063 (2)
H8A0.25980.63880.64490.076*
H8B0.23190.73480.59490.076*
C90.1586 (6)0.6836 (6)0.7355 (10)0.070 (3)
H9A0.17160.64270.82060.083*
H9B0.14530.73910.77570.083*
C100.0753 (5)0.6531 (5)0.6192 (10)0.048 (2)
C110.0041 (6)0.6486 (5)0.6605 (11)0.064 (2)
H110.00550.66340.76010.076*
C120.0813 (6)0.6226 (5)0.5567 (11)0.063 (2)
H120.13420.62020.58770.075*
C130.0069 (6)0.6036 (5)0.3678 (10)0.062 (2)
H130.00740.58840.26740.075*
C140.0719 (6)0.6293 (5)0.4708 (11)0.061 (2)
H140.12450.63050.43850.073*
C150.1667 (6)0.5751 (6)0.3004 (11)0.078 (3)
H15A0.21220.56250.35260.117*
H15B0.15580.52440.24570.117*
H15C0.18670.62190.22880.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.0653 (4)0.0532 (4)0.0608 (4)0.0054 (3)0.0283 (3)0.0055 (3)
Br10.0749 (6)0.0653 (5)0.0857 (7)0.0108 (4)0.0469 (6)0.0137 (5)
Br20.0856 (7)0.0841 (6)0.0634 (7)0.0073 (5)0.0244 (6)0.0206 (5)
Br30.0986 (7)0.0574 (5)0.0807 (7)0.0206 (5)0.0345 (6)0.0085 (5)
Br40.0920 (7)0.0907 (7)0.0933 (8)0.0277 (6)0.0496 (7)0.0219 (6)
N10.048 (4)0.063 (5)0.064 (5)0.004 (4)0.008 (4)0.015 (4)
N20.064 (5)0.054 (4)0.054 (5)0.001 (3)0.022 (4)0.004 (4)
C10.072 (6)0.083 (7)0.117 (9)0.013 (5)0.027 (7)0.013 (6)
C20.075 (6)0.047 (5)0.089 (8)0.004 (5)0.029 (6)0.018 (5)
C30.074 (6)0.054 (5)0.067 (7)0.005 (5)0.023 (5)0.001 (5)
C40.055 (5)0.051 (5)0.042 (5)0.005 (4)0.008 (4)0.004 (4)
C50.076 (6)0.040 (5)0.064 (6)0.013 (4)0.027 (5)0.009 (4)
C60.065 (6)0.055 (5)0.075 (7)0.007 (4)0.020 (5)0.000 (5)
C70.067 (6)0.058 (5)0.062 (6)0.003 (4)0.022 (5)0.002 (5)
C80.071 (6)0.063 (5)0.062 (7)0.006 (5)0.029 (5)0.005 (5)
C90.079 (6)0.076 (6)0.056 (6)0.009 (5)0.021 (6)0.001 (5)
C100.059 (5)0.047 (4)0.045 (5)0.003 (4)0.028 (5)0.008 (4)
C110.069 (6)0.073 (6)0.055 (6)0.008 (5)0.026 (6)0.006 (5)
C120.064 (6)0.075 (6)0.058 (7)0.011 (5)0.032 (6)0.003 (5)
C130.074 (6)0.069 (5)0.052 (6)0.006 (5)0.031 (6)0.000 (5)
C140.053 (6)0.074 (6)0.067 (7)0.008 (4)0.033 (5)0.006 (5)
C150.075 (6)0.086 (7)0.068 (7)0.006 (5)0.009 (6)0.006 (6)
Geometric parameters (Å, º) top
Cd—Br42.5520 (11)C6—H60.9300
Cd—Br32.5779 (11)C7—C81.524 (10)
Cd—Br12.5951 (11)C7—H7A0.9700
Cd—Br22.6041 (12)C7—H7B0.9700
N1—C21.332 (10)C8—C91.522 (10)
N1—C61.342 (9)C8—H8A0.9700
N1—C11.512 (11)C8—H8B0.9700
N2—C121.318 (10)C9—C101.503 (11)
N2—C131.347 (10)C9—H9A0.9700
N2—C151.473 (10)C9—H9B0.9700
C1—H1A0.9600C10—C141.370 (10)
C1—H1B0.9600C10—C111.373 (10)
C1—H1C0.9600C11—C121.365 (11)
C2—C31.359 (11)C11—H110.9300
C2—H20.9300C12—H120.9300
C3—C41.401 (10)C13—C141.380 (11)
C3—H30.9300C13—H130.9300
C4—C51.371 (10)C14—H140.9300
C4—C71.486 (10)C15—H15A0.9600
C5—C61.370 (11)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
Br4—Cd—Br3110.04 (4)C4—C7—H7B109.5
Br4—Cd—Br1112.55 (4)C8—C7—H7B109.5
Br3—Cd—Br1107.77 (4)H7A—C7—H7B108.1
Br4—Cd—Br2107.75 (4)C7—C8—C9111.1 (7)
Br3—Cd—Br2110.93 (4)C7—C8—H8A109.4
Br1—Cd—Br2107.80 (4)C9—C8—H8A109.4
C2—N1—C6119.8 (8)C7—C8—H8B109.4
C2—N1—C1122.0 (7)C9—C8—H8B109.4
C6—N1—C1118.3 (8)H8A—C8—H8B108.0
C12—N2—C13119.6 (8)C10—C9—C8117.3 (7)
C12—N2—C15122.4 (8)C10—C9—H9A108.0
C13—N2—C15118.0 (8)C8—C9—H9A108.0
N1—C1—H1A109.5C10—C9—H9B108.0
N1—C1—H1B109.5C8—C9—H9B108.0
H1A—C1—H1B109.5H9A—C9—H9B107.2
N1—C1—H1C109.5C14—C10—C11116.1 (8)
H1A—C1—H1C109.5C14—C10—C9124.7 (8)
H1B—C1—H1C109.5C11—C10—C9119.2 (8)
N1—C2—C3121.2 (8)C12—C11—C10120.7 (8)
N1—C2—H2119.4C12—C11—H11119.7
C3—C2—H2119.4C10—C11—H11119.7
C2—C3—C4121.0 (8)N2—C12—C11122.2 (8)
C2—C3—H3119.5N2—C12—H12118.9
C4—C3—H3119.5C11—C12—H12118.9
C5—C4—C3115.9 (7)N2—C13—C14119.3 (8)
C5—C4—C7122.6 (7)N2—C13—H13120.4
C3—C4—C7121.5 (8)C14—C13—H13120.4
C4—C5—C6121.5 (7)C10—C14—C13122.2 (8)
C4—C5—H5119.2C10—C14—H14118.9
C6—C5—H5119.2C13—C14—H14118.9
N1—C6—C5120.6 (8)N2—C15—H15A109.5
N1—C6—H6119.7N2—C15—H15B109.5
C5—C6—H6119.7H15A—C15—H15B109.5
C4—C7—C8110.6 (7)N2—C15—H15C109.5
C4—C7—H7A109.5H15A—C15—H15C109.5
C8—C7—H7A109.5H15B—C15—H15C109.5

Experimental details

Crystal data
Chemical formula(C15H20N2)[CdBr4]
Mr660.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.422 (2), 15.382 (2), 8.9885 (14)
β (°) 105.171 (3)
V3)2058.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)8.83
Crystal size (mm)0.28 × 0.19 × 0.11
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.148, 0.379
No. of measured, independent and
observed [I > 2σ(I)] reflections
11428, 4042, 2181
Rint0.066
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.112, 1.01
No. of reflections4042
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.23, 0.42

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the National Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry, China.

References

First citationBruker (1998). SMART. Bruker AXS, Inc., Madison, Wisconsion, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS, Inc., Madison, Wisconsion, USA.  Google Scholar
First citationDou, Y.-L., Li, Z.-G., Xu, J.-W. & Zhang, W.-X. (2007). Acta Cryst. E63, o1874–o1875.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS, Inc., Madison, Wisconsion, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, F., Deng, J.-C., Li, Z.-G. & Xu, J.-W. (2008). Acta Cryst. E64, o253.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds