organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o1907-o1908

N′-[(Z)-4-(Di­methyl­amino)benzyl­­idene]-4-nitro­benzohydrazide mono­hydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574199, India, and cDepartment of Physics, K. L. E. Society's K. L. E. Institute of Technology, Gokul Road, Hubli 590 030, India
*Correspondence e-mail: hkfun@usm.my

(Received 2 September 2008; accepted 4 September 2008; online 13 September 2008)

In the asymmetric unit of the title compound, C16H16N4O3·H2O, there are two symmetry-independent hydrazide mol­ecules with almost identical geometries, and two independent water mol­ecules. The dihedral angles between the two benzene rings in the two hydrazide mol­ecules are 0.11 (5) and 0.77 (5)°. In one mol­ecule, an intra­molecular C—H⋯O hydrogen bond generates a ring of graph-set motif S(5). Inter­molecular N—H⋯O, O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds and ππ stacking inter­actions between the benzene rings [centroid–centroid distances in the range 3.5021 (6)–3.6403 (6) Å] are observed, together with O⋯O [2.7226 (11) Å], O⋯N [2.7072 (10) Å] and N⋯O [2.7072 (10)–2.8582 (12) Å] short contacts. The hydrazine mol­ecules are stacked along the b axis and adjacent mol­ecules are linked by water mol­ecules.

Related literature

For related literature on hydrazones, see: Rollas & Küçükgüzel (2007[Rollas, S. & Küçükgüzel, S. G. (2007). Molecules, 12, 1910-1939.]); Singh et al. (1992[Singh, V., Srivastava, V. K., Palit, G. & Shanker, K. (1992). Arzneim. Forsch. Drug. Res. 42, 993-996.]); Ergenç & Günay (1998[Ergenç, N. & Günay, N. S. (1998). Eur. J. Med. Chem. 33, 143-148.]); Durgun et al. (1993[Durgun, B. B., Çapan, G., Ergenç, N. & Rollas, S. (1993). Pharmazie, 48, 942-943.]). For a related structure, see: Fun et al. (2008[Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594-o1595.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N4O3·H2O

  • Mr = 330.34

  • Triclinic, [P \overline 1]

  • a = 6.5866 (2) Å

  • b = 7.1337 (2) Å

  • c = 34.4059 (12) Å

  • α = 92.113 (2)°

  • β = 90.918 (2)°

  • γ = 107.816 (1)°

  • V = 1537.42 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100.0 (1) K

  • 0.41 × 0.13 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.990

  • 52996 measured reflections

  • 11039 independent reflections

  • 8656 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.155

  • S = 1.07

  • 11039 reflections

  • 461 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1NA⋯O1Wi 0.850 (9) 2.024 (10) 2.8582 (11) 166.8 (16)
O2W—H2W2⋯O1Wii 0.839 (8) 2.066 (9) 2.8892 (12) 166.9 (16)
O2W—H1W2⋯N2Biii 0.838 (8) 2.435 (11) 3.1989 (12) 151.8 (16)
O2W—H1W2⋯O1Biii 0.838 (8) 2.453 (13) 3.1535 (11) 141.6 (15)
O1W—H2W1⋯O1Aiv 0.848 (9) 1.907 (10) 2.7227 (10) 160.9 (18)
O1W—H2W1⋯N2Aiv 0.848 (9) 2.550 (16) 3.1072 (11) 124.2 (14)
N1B—H1NB⋯O2Wv 0.859 (9) 2.073 (9) 2.9260 (12) 171.5 (16)
O1W—H1W1⋯O1Biii 0.842 (9) 1.997 (9) 2.8304 (12) 170.2 (17)
C1A—H1AA⋯O1Wi 0.93 2.49 3.3025 (13) 146
C8A—H8AA⋯O1Wi 0.93 2.51 3.2886 (13) 141
C1B—H1BA⋯O2Wv 0.93 2.41 3.3276 (13) 169
C5B—H5BA⋯O1B 0.93 2.42 2.7555 (13) 101
C8B—H8BA⋯O2Wv 0.93 2.48 3.2977 (14) 147
C15A—H15C⋯O2Bvi 0.96 2.58 3.4738 (15) 156
C15B—H15F⋯O2Avii 0.96 2.58 3.4773 (15) 156
Symmetry codes: (i) x+1, y-1, z; (ii) x, y-1, z; (iii) -x+1, -y+1, -z+1; (iv) x, y+1, z; (v) -x+2, -y+1, -z+1; (vi) x-1, y, z-1; (vii) x-1, y+1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Hydrazones possessing an azometine —NHNCH— proton constitute an important class of compounds for new drug development. Therefore, many researchers have synthesized these compounds as target structures and evaluated their biological activities. These observations have been the guides for the development of new hydrazones. Hydrazones containing an azometine —NHNCH— proton are synthesized by heating the appropriate substituted hydrazines/hydrazides with aldehydes and ketones in solvents like ethanol, methanol, tetrahydrofuran, butanol, glacial acetic acid, ethanol-glacial acetic acid. Another synthetic route for the synthesis of hydrazones is the coupling of aryldiazonium salts with active hydrogen compounds (Rollas & Küçükgüzel, 2007). Hydrazide-hydrazones compounds are not only intermediates but they are also very effective organic compounds in their own right. When they are used as intermediates, coupling products can be synthesized by using the active hydrogen component of the —CONHNCH— azometine group (Singh et al., 1992). N-Alkyl hydrazides can be synthesized by reduction of hydrazones with NaBH4 (Ergenç & Günay, 1998), substituted 1,3,4-oxadiazolines can be synthesized when hydrazones are heated in the presence of acetic anhydride (Durgun et al., 1993). Prompted by these review and in continuation of our work (Fun et al., 2008), we herein report the crystal structure of the title compound, (I).

There are two independent molecules (A and B) in the asymmetric unit of (I), with similar geometries (Fig. 1.) The bond lengths and angles are found to have normal values (Allen et al., 1987). The dihedral angle formed by the benzene (C1A–C6A) and (C9A–C14A) rings is 0.11 (5)° in molecule A and that between the benzene (C1B–C6B) and (C9B–C14B) rings is 0.77 (5)° in molecule B, indicating that they are coplanar. In molecule B, an intramolecular C—H···O hydrogen bond generates an S(5) ring motif (Bernstein et al., 1995).

The crystal packing is consolidated by N—H···O, O—H···O, O—H···N and C—H···O inter and intramolecular hydrogen bonding (Table 1). Furthermore, the packing is strengthened by ππ stacking interactions involving the benzene (C1A–C6A) (Cg1) and the symmetry related (C9B–C14B) ring (Cg4) [Cg1···Cg4i = 3.5021 Å; Cg1—Cg4ii = 3.6403 (6) Å; symmetry codes: (i) 2-x, 1-y, 1-z; (ii) 2-x, -y, 1-z] and the benzene (C9A–C14A) ring (Cg2) and the symmetry related (C9B–C14B) ring (Cg3) [Cg2···Cg3i = 3.6065 (6) Å; Cg2—Cg3ii = 3.5274 (6) Å; symmetry codes: (i) 2-x, 1-y, 1-z; (ii) 2-x, -y, 1-z] together with O···O = 2.7226 (11) Å, O···N = 2.7072 (10) Å and N···O = 2.7072 (10)–2.8582 (12) Å short contacts. In the crystal packing, the molecules are stacked along the b axis and the adjacent molecules are linked by water molecules to form an infinite one dimensional chain along the [010] direction.

Related literature top

For related literature on hydrazones, see: Rollas & Küçükgüzel (2007); Singh et al. (1992); Ergenç & Günay (1998); Durgun et al. (1993). For related literature, see: Fun et al. (2008). For bond-length data, see: Allen et al. (1987). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Experimental top

The title compound was obtained by refluxing 4-nitrrophenyl hydrazide (0.01 mol) and 4-(dimethylamino)benzaldehyde (0.01 mol) in ethanol (30 ml) with the addition of 3 drops of concentrated Sulfuric acid for 3 h. Excess ethanol was removed from the reaction mixture under reduced pressure. The solid product obtained was filtered, washed with water and dried. Crystals suitable for X-ray analysis were obtained from ethanol by slow evaporation.

Refinement top

The amino and water H atoms were located in a difference map and refined with restraints of N—H = 0.85 (1) and O—H = 0.84 (1) Å. The remaining H atoms were positioned geometrically [C—H = 0.93 (aromatic) or 0.96 Å (methyl)] and refined using a riding model, with Uiso(H) = 1.2Ueq(aromatic C) and 1.5Ueq(methyl C). A rotating-group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis, showing infinite 1-D chains along the [010] direction.
N'-[(Z)-4-(Dimethylamino)benzylene]-4-nitrobenzohydrazide monohydrate top
Crystal data top
C16H16N4O3·H2OZ = 4
Mr = 330.34F(000) = 696
Triclinic, P1Dx = 1.427 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5866 (2) ÅCell parameters from 9891 reflections
b = 7.1337 (2) Åθ = 2.2–29.2°
c = 34.4059 (12) ŵ = 0.11 mm1
α = 92.113 (2)°T = 100 K
β = 90.918 (2)°Block, red
γ = 107.816 (1)°0.41 × 0.13 × 0.10 mm
V = 1537.42 (8) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
11039 independent reflections
Radiation source: fine-focus sealed tube8656 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 32.5°, θmin = 0.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.959, Tmax = 0.990k = 1010
52996 measured reflectionsl = 5151
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0736P)2 + 0.5006P]
where P = (Fo2 + 2Fc2)/3
11039 reflections(Δ/σ)max = 0.001
461 parametersΔρmax = 0.45 e Å3
8 restraintsΔρmin = 0.36 e Å3
Crystal data top
C16H16N4O3·H2Oγ = 107.816 (1)°
Mr = 330.34V = 1537.42 (8) Å3
Triclinic, P1Z = 4
a = 6.5866 (2) ÅMo Kα radiation
b = 7.1337 (2) ŵ = 0.11 mm1
c = 34.4059 (12) ÅT = 100 K
α = 92.113 (2)°0.41 × 0.13 × 0.10 mm
β = 90.918 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
11039 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
8656 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.990Rint = 0.028
52996 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0488 restraints
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.45 e Å3
11039 reflectionsΔρmin = 0.36 e Å3
461 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.70471 (11)0.07582 (12)0.30351 (2)0.01918 (16)
O2A1.23137 (15)0.24154 (16)0.46624 (3)0.0307 (2)
O3A1.53442 (13)0.13214 (15)0.43817 (3)0.02754 (19)
N1A0.99847 (13)0.03980 (13)0.26697 (2)0.01355 (15)
N2A0.89267 (13)0.00979 (13)0.23380 (2)0.01426 (16)
N3A1.33845 (15)0.17619 (14)0.43808 (3)0.01864 (17)
N4A0.71656 (14)0.20609 (14)0.05749 (2)0.01700 (17)
C1A1.24033 (15)0.04368 (15)0.33741 (3)0.01467 (17)
H1AA1.31810.01190.31610.018*
C2A1.34633 (15)0.06955 (15)0.37105 (3)0.01509 (18)
H2AA1.49450.03330.37250.018*
C3A1.22662 (15)0.15040 (14)0.40243 (3)0.01401 (17)
C4A1.00511 (16)0.20815 (15)0.40145 (3)0.01574 (18)
H4AA0.92830.26280.42290.019*
C5A0.90143 (15)0.18208 (14)0.36758 (3)0.01475 (17)
H5AA0.75320.21920.36630.018*
C6A1.01742 (15)0.10065 (14)0.33537 (3)0.01233 (16)
C7A0.89305 (15)0.07167 (14)0.30049 (3)0.01324 (17)
C8A1.01208 (15)0.04600 (14)0.20449 (3)0.01353 (17)
H8AA1.15750.06370.20740.016*
C9A0.92940 (15)0.08245 (14)0.16715 (3)0.01250 (16)
C10A0.71074 (15)0.03692 (14)0.15792 (3)0.01435 (17)
H10A0.61150.01950.17640.017*
C11A0.64051 (15)0.07458 (15)0.12178 (3)0.01456 (17)
H11A0.49480.04210.11640.017*
C12A0.78608 (15)0.16157 (14)0.09285 (3)0.01284 (17)
C13A1.00565 (15)0.20405 (15)0.10204 (3)0.01502 (17)
H13A1.10570.25890.08360.018*
C14A1.07347 (15)0.16486 (15)0.13832 (3)0.01493 (17)
H14A1.21900.19410.14370.018*
C15A0.49080 (18)0.14199 (19)0.04745 (3)0.0236 (2)
H15A0.41640.19620.06640.035*
H15B0.43760.00070.04710.035*
H15C0.46870.18650.02220.035*
C16A0.86549 (18)0.26143 (18)0.02608 (3)0.0225 (2)
H16A0.98240.37450.03440.034*
H16B0.79390.29270.00390.034*
H16C0.91850.15370.01920.034*
O1B0.70699 (12)0.38412 (13)0.80186 (2)0.02177 (17)
O2B1.25253 (15)0.27622 (16)0.96674 (3)0.0316 (2)
O3B1.55367 (13)0.37835 (15)0.93778 (3)0.02784 (19)
N1B1.01061 (13)0.49010 (12)0.76799 (2)0.01420 (16)
N2B0.89598 (14)0.51210 (12)0.73516 (3)0.01539 (16)
N3B1.35800 (15)0.33755 (14)0.93811 (3)0.01923 (18)
N4B0.70414 (14)0.70854 (14)0.55794 (3)0.01718 (17)
C1B1.25594 (15)0.46004 (15)0.83674 (3)0.01543 (18)
H1BA1.33260.51040.81500.019*
C2B1.36291 (16)0.43702 (15)0.87055 (3)0.01629 (18)
H2BA1.51100.47140.87160.020*
C3B1.24511 (16)0.36207 (14)0.90255 (3)0.01464 (17)
C4B1.02391 (16)0.30698 (15)0.90212 (3)0.01653 (18)
H4BA0.94820.25580.92390.020*
C5B0.91904 (16)0.33052 (15)0.86818 (3)0.01572 (18)
H5BA0.77080.29460.86720.019*
C6B1.03316 (15)0.40749 (14)0.83543 (3)0.01277 (16)
C7B0.90385 (15)0.42761 (14)0.80052 (3)0.01407 (17)
C8B1.01092 (16)0.56375 (14)0.70506 (3)0.01526 (18)
H8BA1.15680.58300.70740.018*
C9B0.92289 (15)0.59328 (14)0.66764 (3)0.01363 (17)
C10B0.70382 (15)0.54404 (14)0.65874 (3)0.01446 (17)
H10B0.60590.48730.67740.017*
C11B0.63122 (15)0.57871 (15)0.62253 (3)0.01458 (17)
H11B0.48520.54450.61730.017*
C12B0.77534 (15)0.66547 (14)0.59329 (3)0.01311 (17)
C13B0.99531 (15)0.70948 (15)0.60209 (3)0.01521 (18)
H13B1.09410.76310.58340.018*
C14B1.06500 (15)0.67355 (14)0.63834 (3)0.01509 (18)
H14B1.21080.70360.64350.018*
C15B0.47861 (18)0.64283 (19)0.54800 (3)0.0242 (2)
H15D0.40350.69480.56720.036*
H15E0.42710.50140.54730.036*
H15F0.45550.68860.52290.036*
C16B0.85261 (18)0.76642 (18)0.52658 (3)0.0222 (2)
H16D0.96740.88130.53490.033*
H16E0.77970.79560.50430.033*
H16F0.90880.66070.51980.033*
O1W0.41887 (12)0.95772 (12)0.24824 (2)0.01787 (15)
O2W0.53340 (12)0.38228 (13)0.24783 (2)0.02204 (17)
H1NA1.1237 (17)0.049 (3)0.2650 (5)0.037 (4)*
H2W20.485 (2)0.2591 (12)0.2452 (5)0.046 (5)*
H1W20.433 (2)0.429 (2)0.2445 (5)0.042 (5)*
H2W10.529 (2)0.962 (3)0.2618 (4)0.048 (5)*
H1NB1.1465 (14)0.523 (2)0.7656 (5)0.037 (4)*
H1W10.397 (3)0.860 (2)0.2324 (4)0.045 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0129 (3)0.0311 (4)0.0149 (3)0.0085 (3)0.0005 (2)0.0032 (3)
O2A0.0315 (4)0.0487 (6)0.0149 (4)0.0152 (4)0.0023 (3)0.0136 (4)
O3A0.0207 (4)0.0431 (5)0.0213 (4)0.0132 (4)0.0048 (3)0.0048 (4)
N1A0.0129 (3)0.0204 (4)0.0095 (3)0.0083 (3)0.0012 (3)0.0024 (3)
N2A0.0162 (4)0.0191 (4)0.0093 (4)0.0082 (3)0.0026 (3)0.0015 (3)
N3A0.0226 (4)0.0238 (4)0.0122 (4)0.0109 (3)0.0022 (3)0.0033 (3)
N4A0.0198 (4)0.0230 (4)0.0093 (4)0.0078 (3)0.0004 (3)0.0048 (3)
C1A0.0142 (4)0.0188 (4)0.0115 (4)0.0056 (3)0.0002 (3)0.0019 (3)
C2A0.0142 (4)0.0206 (4)0.0118 (4)0.0074 (3)0.0011 (3)0.0009 (3)
C3A0.0176 (4)0.0157 (4)0.0104 (4)0.0077 (3)0.0020 (3)0.0013 (3)
C4A0.0173 (4)0.0172 (4)0.0135 (4)0.0059 (3)0.0017 (3)0.0049 (3)
C5A0.0140 (4)0.0169 (4)0.0134 (4)0.0045 (3)0.0003 (3)0.0036 (3)
C6A0.0138 (4)0.0137 (4)0.0107 (4)0.0060 (3)0.0003 (3)0.0016 (3)
C7A0.0135 (4)0.0147 (4)0.0118 (4)0.0048 (3)0.0007 (3)0.0011 (3)
C8A0.0143 (4)0.0155 (4)0.0115 (4)0.0055 (3)0.0010 (3)0.0015 (3)
C9A0.0148 (4)0.0135 (4)0.0101 (4)0.0056 (3)0.0003 (3)0.0016 (3)
C10A0.0146 (4)0.0181 (4)0.0106 (4)0.0051 (3)0.0007 (3)0.0032 (3)
C11A0.0131 (4)0.0189 (4)0.0119 (4)0.0051 (3)0.0001 (3)0.0031 (3)
C12A0.0160 (4)0.0140 (4)0.0095 (4)0.0058 (3)0.0006 (3)0.0017 (3)
C13A0.0156 (4)0.0178 (4)0.0123 (4)0.0056 (3)0.0029 (3)0.0037 (3)
C14A0.0137 (4)0.0178 (4)0.0141 (4)0.0058 (3)0.0008 (3)0.0028 (3)
C15A0.0214 (5)0.0349 (6)0.0157 (5)0.0103 (4)0.0034 (4)0.0056 (4)
C16A0.0262 (5)0.0283 (5)0.0126 (5)0.0070 (4)0.0032 (4)0.0062 (4)
O1B0.0149 (3)0.0334 (4)0.0173 (4)0.0079 (3)0.0011 (3)0.0005 (3)
O2B0.0323 (5)0.0511 (6)0.0146 (4)0.0157 (4)0.0034 (3)0.0141 (4)
O3B0.0214 (4)0.0426 (5)0.0212 (4)0.0120 (4)0.0036 (3)0.0068 (4)
N1B0.0150 (4)0.0176 (4)0.0107 (4)0.0059 (3)0.0023 (3)0.0025 (3)
N2B0.0178 (4)0.0160 (4)0.0128 (4)0.0060 (3)0.0045 (3)0.0013 (3)
N3B0.0235 (4)0.0235 (4)0.0130 (4)0.0104 (3)0.0016 (3)0.0036 (3)
N4B0.0186 (4)0.0228 (4)0.0110 (4)0.0071 (3)0.0004 (3)0.0043 (3)
C1B0.0156 (4)0.0191 (4)0.0121 (4)0.0056 (3)0.0006 (3)0.0035 (3)
C2B0.0152 (4)0.0206 (4)0.0140 (4)0.0068 (3)0.0005 (3)0.0035 (3)
C3B0.0193 (4)0.0158 (4)0.0104 (4)0.0077 (3)0.0013 (3)0.0022 (3)
C4B0.0188 (4)0.0180 (4)0.0137 (4)0.0064 (3)0.0021 (3)0.0037 (3)
C5B0.0154 (4)0.0178 (4)0.0141 (4)0.0050 (3)0.0010 (3)0.0028 (3)
C6B0.0147 (4)0.0128 (4)0.0115 (4)0.0055 (3)0.0011 (3)0.0004 (3)
C7B0.0158 (4)0.0147 (4)0.0121 (4)0.0055 (3)0.0015 (3)0.0005 (3)
C8B0.0173 (4)0.0155 (4)0.0135 (4)0.0060 (3)0.0027 (3)0.0013 (3)
C9B0.0159 (4)0.0131 (4)0.0125 (4)0.0054 (3)0.0014 (3)0.0009 (3)
C10B0.0165 (4)0.0163 (4)0.0106 (4)0.0047 (3)0.0004 (3)0.0034 (3)
C11B0.0143 (4)0.0174 (4)0.0122 (4)0.0048 (3)0.0004 (3)0.0025 (3)
C12B0.0169 (4)0.0138 (4)0.0099 (4)0.0064 (3)0.0006 (3)0.0017 (3)
C13B0.0154 (4)0.0171 (4)0.0138 (4)0.0056 (3)0.0022 (3)0.0031 (3)
C14B0.0147 (4)0.0162 (4)0.0150 (4)0.0055 (3)0.0003 (3)0.0022 (3)
C15B0.0203 (5)0.0376 (6)0.0161 (5)0.0105 (4)0.0025 (4)0.0065 (4)
C16B0.0251 (5)0.0280 (5)0.0128 (5)0.0062 (4)0.0029 (4)0.0057 (4)
O1W0.0143 (3)0.0264 (4)0.0148 (3)0.0091 (3)0.0012 (3)0.0013 (3)
O2W0.0165 (3)0.0271 (4)0.0234 (4)0.0074 (3)0.0002 (3)0.0056 (3)
Geometric parameters (Å, º) top
O1A—C7A1.2379 (11)O3B—N3B1.2317 (12)
O2A—N3A1.2278 (12)N1B—C7B1.3475 (13)
O3A—N3A1.2315 (12)N1B—N2B1.3888 (11)
N1A—C7A1.3462 (12)N1B—H1NB0.859 (9)
N1A—N2A1.3846 (11)N2B—C8B1.2899 (13)
N1A—H1NA0.850 (9)N3B—C3B1.4650 (13)
N2A—C8A1.2875 (12)N4B—C12B1.3753 (12)
N3A—C3A1.4667 (12)N4B—C15B1.4454 (14)
N4A—C12A1.3751 (12)N4B—C16B1.4527 (14)
N4A—C15A1.4475 (14)C1B—C2B1.3911 (13)
N4A—C16A1.4540 (13)C1B—C6B1.3985 (13)
C1A—C2A1.3892 (13)C1B—H1BA0.9300
C1A—C6A1.3983 (13)C2B—C3B1.3847 (14)
C1A—H1AA0.9300C2B—H2BA0.9300
C2A—C3A1.3838 (13)C3B—C4B1.3878 (14)
C2A—H2AA0.9300C4B—C5B1.3888 (14)
C3A—C4A1.3889 (13)C4B—H4BA0.9300
C4A—C5A1.3884 (13)C5B—C6B1.3988 (13)
C4A—H4AA0.9300C5B—H5BA0.9300
C5A—C6A1.3972 (13)C6B—C7B1.4978 (13)
C5A—H5AA0.9300C8B—C9B1.4524 (13)
C6A—C7A1.4981 (13)C8B—H8BA0.9300
C8A—C9A1.4505 (13)C9B—C14B1.4019 (13)
C8A—H8AA0.9300C9B—C10B1.4025 (13)
C9A—C14A1.4005 (13)C10B—C11B1.3847 (13)
C9A—C10A1.4043 (13)C10B—H10B0.9300
C10A—C11A1.3835 (13)C11B—C12B1.4189 (13)
C10A—H10A0.9300C11B—H11B0.9300
C11A—C12A1.4167 (13)C12B—C13B1.4107 (13)
C11A—H11A0.9300C13B—C14B1.3817 (13)
C12A—C13A1.4119 (13)C13B—H13B0.9300
C13A—C14A1.3857 (13)C14B—H14B0.9300
C13A—H13A0.9300C15B—H15D0.9600
C14A—H14A0.9300C15B—H15E0.9600
C15A—H15A0.9600C15B—H15F0.9600
C15A—H15B0.9600C16B—H16D0.9600
C15A—H15C0.9600C16B—H16E0.9600
C16A—H16A0.9600C16B—H16F0.9600
C16A—H16B0.9600O1W—H2W10.848 (9)
C16A—H16C0.9600O1W—H1W10.842 (9)
O1B—C7B1.2396 (12)O2W—H2W20.839 (8)
O2B—N3B1.2297 (12)O2W—H1W20.838 (8)
C7A—N1A—N2A118.95 (8)C7B—N1B—H1NB125.9 (11)
C7A—N1A—H1NA122.1 (12)N2B—N1B—H1NB115.4 (11)
N2A—N1A—H1NA118.7 (12)C8B—N2B—N1B113.95 (8)
C8A—N2A—N1A114.85 (8)O2B—N3B—O3B123.26 (9)
O2A—N3A—O3A123.44 (9)O2B—N3B—C3B118.35 (9)
O2A—N3A—C3A118.16 (9)O3B—N3B—C3B118.39 (9)
O3A—N3A—C3A118.40 (9)C12B—N4B—C15B119.95 (8)
C12A—N4A—C15A119.77 (8)C12B—N4B—C16B119.70 (9)
C12A—N4A—C16A119.76 (8)C15B—N4B—C16B117.92 (9)
C15A—N4A—C16A117.83 (9)C2B—C1B—C6B120.04 (9)
C2A—C1A—C6A120.39 (9)C2B—C1B—H1BA120.0
C2A—C1A—H1AA119.8C6B—C1B—H1BA120.0
C6A—C1A—H1AA119.8C3B—C2B—C1B118.87 (9)
C3A—C2A—C1A118.55 (9)C3B—C2B—H2BA120.6
C3A—C2A—H2AA120.7C1B—C2B—H2BA120.6
C1A—C2A—H2AA120.7C2B—C3B—C4B122.54 (9)
C2A—C3A—C4A122.60 (9)C2B—C3B—N3B118.80 (9)
C2A—C3A—N3A118.59 (9)C4B—C3B—N3B118.65 (9)
C4A—C3A—N3A118.82 (9)C3B—C4B—C5B118.02 (9)
C5A—C4A—C3A118.18 (9)C3B—C4B—H4BA121.0
C5A—C4A—H4AA120.9C5B—C4B—H4BA121.0
C3A—C4A—H4AA120.9C4B—C5B—C6B120.93 (9)
C4A—C5A—C6A120.71 (9)C4B—C5B—H5BA119.5
C4A—C5A—H5AA119.6C6B—C5B—H5BA119.5
C6A—C5A—H5AA119.6C1B—C6B—C5B119.59 (9)
C5A—C6A—C1A119.57 (8)C1B—C6B—C7B124.01 (9)
C5A—C6A—C7A117.17 (8)C5B—C6B—C7B116.40 (8)
C1A—C6A—C7A123.22 (8)O1B—C7B—N1B122.42 (9)
O1A—C7A—N1A123.57 (9)O1B—C7B—C6B120.50 (9)
O1A—C7A—C6A120.16 (9)N1B—C7B—C6B117.07 (8)
N1A—C7A—C6A116.26 (8)N2B—C8B—C9B122.99 (9)
N2A—C8A—C9A122.77 (9)N2B—C8B—H8BA118.5
N2A—C8A—H8AA118.6C9B—C8B—H8BA118.5
C9A—C8A—H8AA118.6C14B—C9B—C10B117.73 (9)
C14A—C9A—C10A117.64 (8)C14B—C9B—C8B118.20 (9)
C14A—C9A—C8A118.88 (8)C10B—C9B—C8B124.06 (9)
C10A—C9A—C8A123.48 (8)C11B—C10B—C9B120.92 (9)
C11A—C10A—C9A121.09 (9)C11B—C10B—H10B119.5
C11A—C10A—H10A119.5C9B—C10B—H10B119.5
C9A—C10A—H10A119.5C10B—C11B—C12B121.27 (9)
C10A—C11A—C12A121.35 (9)C10B—C11B—H11B119.4
C10A—C11A—H11A119.3C12B—C11B—H11B119.4
C12A—C11A—H11A119.3N4B—C12B—C13B121.07 (9)
N4A—C12A—C13A121.29 (8)N4B—C12B—C11B121.46 (9)
N4A—C12A—C11A121.36 (8)C13B—C12B—C11B117.46 (8)
C13A—C12A—C11A117.34 (8)C14B—C13B—C12B120.49 (9)
C14A—C13A—C12A120.62 (9)C14B—C13B—H13B119.8
C14A—C13A—H13A119.7C12B—C13B—H13B119.8
C12A—C13A—H13A119.7C13B—C14B—C9B122.08 (9)
C13A—C14A—C9A121.94 (9)C13B—C14B—H14B119.0
C13A—C14A—H14A119.0C9B—C14B—H14B119.0
C9A—C14A—H14A119.0N4B—C15B—H15D109.5
N4A—C15A—H15A109.5N4B—C15B—H15E109.5
N4A—C15A—H15B109.5H15D—C15B—H15E109.5
H15A—C15A—H15B109.5N4B—C15B—H15F109.5
N4A—C15A—H15C109.5H15D—C15B—H15F109.5
H15A—C15A—H15C109.5H15E—C15B—H15F109.5
H15B—C15A—H15C109.5N4B—C16B—H16D109.5
N4A—C16A—H16A109.5N4B—C16B—H16E109.5
N4A—C16A—H16B109.5H16D—C16B—H16E109.5
H16A—C16A—H16B109.5N4B—C16B—H16F109.5
N4A—C16A—H16C109.5H16D—C16B—H16F109.5
H16A—C16A—H16C109.5H16E—C16B—H16F109.5
H16B—C16A—H16C109.5H2W1—O1W—H1W1106.7 (12)
C7B—N1B—N2B118.62 (8)H2W2—O2W—H1W2108.6 (12)
C7A—N1A—N2A—C8A170.93 (9)C7B—N1B—N2B—C8B176.98 (9)
C6A—C1A—C2A—C3A0.75 (15)C6B—C1B—C2B—C3B0.12 (15)
C1A—C2A—C3A—C4A0.60 (15)C1B—C2B—C3B—C4B0.67 (16)
C1A—C2A—C3A—N3A179.48 (9)C1B—C2B—C3B—N3B179.87 (9)
O2A—N3A—C3A—C2A177.47 (10)O2B—N3B—C3B—C2B177.95 (10)
O3A—N3A—C3A—C2A2.85 (15)O3B—N3B—C3B—C2B2.44 (15)
O2A—N3A—C3A—C4A2.60 (15)O2B—N3B—C3B—C4B2.82 (15)
O3A—N3A—C3A—C4A177.07 (10)O3B—N3B—C3B—C4B176.80 (10)
C2A—C3A—C4A—C5A0.35 (15)C2B—C3B—C4B—C5B0.61 (16)
N3A—C3A—C4A—C5A179.73 (9)N3B—C3B—C4B—C5B179.81 (9)
C3A—C4A—C5A—C6A0.25 (15)C3B—C4B—C5B—C6B0.00 (15)
C4A—C5A—C6A—C1A0.42 (15)C2B—C1B—C6B—C5B0.46 (15)
C4A—C5A—C6A—C7A178.04 (9)C2B—C1B—C6B—C7B179.70 (9)
C2A—C1A—C6A—C5A0.68 (15)C4B—C5B—C6B—C1B0.53 (15)
C2A—C1A—C6A—C7A178.15 (9)C4B—C5B—C6B—C7B179.62 (9)
N2A—N1A—C7A—O1A0.01 (15)N2B—N1B—C7B—O1B1.99 (15)
N2A—N1A—C7A—C6A179.29 (8)N2B—N1B—C7B—C6B179.45 (8)
C5A—C6A—C7A—O1A16.42 (14)C1B—C6B—C7B—O1B177.60 (10)
C1A—C6A—C7A—O1A161.10 (10)C5B—C6B—C7B—O1B2.56 (14)
C5A—C6A—C7A—N1A164.26 (9)C1B—C6B—C7B—N1B3.81 (14)
C1A—C6A—C7A—N1A18.21 (14)C5B—C6B—C7B—N1B176.03 (9)
N1A—N2A—C8A—C9A179.26 (8)N1B—N2B—C8B—C9B179.47 (9)
N2A—C8A—C9A—C14A172.55 (9)N2B—C8B—C9B—C14B171.95 (9)
N2A—C8A—C9A—C10A8.37 (15)N2B—C8B—C9B—C10B8.92 (16)
C14A—C9A—C10A—C11A0.81 (15)C14B—C9B—C10B—C11B1.69 (14)
C8A—C9A—C10A—C11A179.90 (9)C8B—C9B—C10B—C11B179.17 (9)
C9A—C10A—C11A—C12A0.44 (15)C9B—C10B—C11B—C12B0.18 (15)
C15A—N4A—C12A—C13A173.52 (10)C15B—N4B—C12B—C13B173.26 (10)
C16A—N4A—C12A—C13A12.30 (15)C16B—N4B—C12B—C13B11.36 (15)
C15A—N4A—C12A—C11A7.65 (15)C15B—N4B—C12B—C11B7.93 (15)
C16A—N4A—C12A—C11A168.87 (9)C16B—N4B—C12B—C11B169.83 (9)
C10A—C11A—C12A—N4A177.42 (9)C10B—C11B—C12B—N4B176.95 (9)
C10A—C11A—C12A—C13A1.46 (15)C10B—C11B—C12B—C13B1.91 (15)
N4A—C12A—C13A—C14A177.65 (9)N4B—C12B—C13B—C14B177.09 (9)
C11A—C12A—C13A—C14A1.23 (14)C11B—C12B—C13B—C14B1.76 (14)
C12A—C13A—C14A—C9A0.00 (15)C12B—C13B—C14B—C9B0.10 (15)
C10A—C9A—C14A—C13A1.04 (15)C10B—C9B—C14B—C13B1.84 (15)
C8A—C9A—C14A—C13A179.83 (9)C8B—C9B—C14B—C13B178.97 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O1Wi0.85 (1)2.02 (1)2.8582 (11)167 (2)
O2W—H2W2···O1Wii0.84 (1)2.07 (1)2.8892 (12)167 (2)
O2W—H1W2···N2Biii0.84 (1)2.44 (1)3.1989 (12)152 (2)
O2W—H1W2···O1Biii0.84 (1)2.45 (1)3.1535 (11)142 (2)
O1W—H2W1···O1Aiv0.85 (1)1.91 (1)2.7227 (10)161 (2)
O1W—H2W1···N2Aiv0.85 (1)2.55 (2)3.1072 (11)124 (1)
N1B—H1NB···O2Wv0.86 (1)2.07 (1)2.9260 (12)172 (2)
O1W—H1W1···O1Biii0.84 (1)2.00 (1)2.8304 (12)170 (2)
C1A—H1AA···O1Wi0.932.493.3025 (13)146
C8A—H8AA···O1Wi0.932.513.2886 (13)141
C1B—H1BA···O2Wv0.932.413.3276 (13)169
C5B—H5BA···O1B0.932.422.7555 (13)101
C8B—H8BA···O2Wv0.932.483.2977 (14)147
C15A—H15C···O2Bvi0.962.583.4738 (15)156
C15B—H15F···O2Avii0.962.583.4773 (15)156
Symmetry codes: (i) x+1, y1, z; (ii) x, y1, z; (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x+2, y+1, z+1; (vi) x1, y, z1; (vii) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H16N4O3·H2O
Mr330.34
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.5866 (2), 7.1337 (2), 34.4059 (12)
α, β, γ (°)92.113 (2), 90.918 (2), 107.816 (1)
V3)1537.42 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.41 × 0.13 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.959, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
52996, 11039, 8656
Rint0.028
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.155, 1.08
No. of reflections11039
No. of parameters461
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.36

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008), SHELXTL and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O1Wi0.850 (9)2.024 (10)2.8582 (11)166.8 (16)
O2W—H2W2···O1Wii0.839 (8)2.066 (9)2.8892 (12)166.9 (16)
O2W—H1W2···N2Biii0.838 (8)2.435 (11)3.1989 (12)151.8 (16)
O2W—H1W2···O1Biii0.838 (8)2.453 (13)3.1535 (11)141.6 (15)
O1W—H2W1···O1Aiv0.848 (9)1.907 (10)2.7227 (10)160.9 (18)
O1W—H2W1···N2Aiv0.848 (9)2.550 (16)3.1072 (11)124.2 (14)
N1B—H1NB···O2Wv0.859 (9)2.073 (9)2.9260 (12)171.5 (16)
O1W—H1W1···O1Biii0.842 (9)1.997 (9)2.8304 (12)170.2 (17)
C1A—H1AA···O1Wi0.932.493.3025 (13)146
C8A—H8AA···O1Wi0.932.513.2886 (13)141
C1B—H1BA···O2Wv0.932.413.3276 (13)169
C5B—H5BA···O1B0.932.422.7555 (13)101
C8B—H8BA···O2Wv0.932.483.2977 (14)147
C15A—H15C···O2Bvi0.962.583.4738 (15)156
C15B—H15F···O2Avii0.962.583.4773 (15)156
Symmetry codes: (i) x+1, y1, z; (ii) x, y1, z; (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x+2, y+1, z+1; (vi) x1, y, z1; (vii) x1, y+1, z.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641114, India.

§Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574199, India.

Acknowledgements

FHK and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDurgun, B. B., Çapan, G., Ergenç, N. & Rollas, S. (1993). Pharmazie, 48, 942–943.  CAS PubMed Web of Science Google Scholar
First citationErgenç, N. & Günay, N. S. (1998). Eur. J. Med. Chem. 33, 143–148.  Google Scholar
First citationFun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRollas, S. & Küçükgüzel, S. G. (2007). Molecules, 12, 1910–1939.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, V., Srivastava, V. K., Palit, G. & Shanker, K. (1992). Arzneim. Forsch. Drug. Res. 42, 993–996.  CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o1907-o1908
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds