metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1312-m1313

A novel double-chain silver(I) coordination polymer: catena-poly[[[μ-aqua-aqua­disilver(I)]-bis­­(μ3-5-methyl­pyrazine-2-carboxyl­ato)] dihydrate]

aDepartment of Chemistry, Shangqiu Normal University, Shangqiu 476000, Henan, People's Republic of China
*Correspondence e-mail: zhaibin1978@163.com

(Received 15 July 2008; accepted 17 September 2008; online 24 September 2008)

In the title silver(I) coordination polymer, {[Ag2(C6H5N2O2)2(H2O)2]·2H2O}n, the [Ag2(μ2-H2O)(H2O)] cores are extended by anti­parallel 5-methyl­pyrazine-2-carboxyl­ate (L) ligands, forming a novel double-chain structure. Both Ag+ cations show a distorted square-pyramidal coordination. Ag1 is bonded to two water molecules, one L N atom, one N atom and one carboxylate O atom from a neighbouring L, whereas Ag2 is surrounded by two L N atoms, two L carboxylate O atoms and one bridging water molecule. O—H⋯O hydrogen-bonding inter­actions involving water clusters and carboxyl­ate O atoms link the mol­ecules into a three-dimensional supra­molecular architecture, which is further consolidated by weak C—H⋯O inter­actions and ππ stacking inter­actions [centroid–centroid distance 3.643 (5) Å].

Related literature

For related literature, see: Ciurtin et al. (2001[Ciurtin, D. M., Smith, M. D. & zur Loye, H.-C. (2001). Inorg. Chim. Acta, 324, 46-49.], 2003[Ciurtin, D. M., Smith, M. D. & zur Loye, H.-C. (2003). Polyhedron, 22, 3043-3049.]); Dong et al. (2000[Dong, Y. B., Smith, M. D. & zur Loye, H.-C. (2000). Inorg. Chem. 39, 1943-1949.]); Garribba et al. (2006[Garribba, E., Micera, G., Lodyga-Chruscinska, E. & Sanna, D. (2006). Eur. J. Inorg. Chem. 13, 2690-2696.]); Liu et al. (2007[Liu, F.-Y., Shang, R.-L., Du, L., Zhao, Q.-H. & Fang, R.-B. (2007). Acta Cryst. E63, m120-m122.]); Ptasiewicz-Bak & Leciejewicz (2000[Ptasiewicz-Bak, H. & Leciejewicz, J. (2000). J. Coord. Chem. 49, 301-307.]); Shang et al. (2007[Shang, R.-L., Liu, F.-Y., Du, L., Li, X.-B. & Sun, B.-W. (2007). Acta Cryst. E63, m190-m192.]); Tanase et al. (2006[Tanase, S., Van Son, M., Van Albada, G. A., De Gelder, R., Bouwman, E. & Reedijk, J. (2006). Polyhedron, 25, 2967-2975.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C6H5N2O2)2(H2O)2]·2H2O

  • Mr = 562.04

  • Triclinic, [P \overline 1]

  • a = 6.9481 (5) Å

  • b = 10.1827 (8) Å

  • c = 13.483 (1) Å

  • α = 107.503 (1)°

  • β = 100.185 (1)°

  • γ = 103.164 (1)°

  • V = 854.4 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.34 mm−1

  • T = 293 (2) K

  • 0.24 × 0.20 × 0.16 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation,Tokyo, Japan.]) Tmin = 0.581, Tmax = 0.698

  • 4422 measured reflections

  • 2982 independent reflections

  • 2518 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.071

  • S = 1.07

  • 2982 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Selected bond lengths (Å)

Ag1—N1 2.260 (3)
Ag1—N3 2.311 (3)
Ag1—O6 2.478 (3)
Ag1—O5 2.517 (3)
Ag1—O4 2.598 (3)
Ag2—N4i 2.233 (3)
Ag2—N2 2.250 (3)
Ag2—O2 2.558 (3)
Ag2—O5ii 2.688 (3)
Ag2—O4ii 2.809 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) -x+1, -y+1, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O4 0.93 2.38 3.061 (4) 130
O5—H5B⋯O2ii 0.85 1.94 2.675 (4) 144
O5—H5A⋯O7iii 0.85 1.91 2.756 (4) 175
O6—H6A⋯O7iv 0.85 2.00 2.828 (4) 166
O6—H6B⋯O1v 0.85 1.96 2.794 (4) 168
O7—H7A⋯O8vi 0.85 1.86 2.698 (4) 168
O7—H7B⋯O3vii 0.85 1.87 2.712 (4) 171
O8—H8A⋯O1 0.85 2.02 2.867 (4) 176
O8—H8B⋯O3 0.85 2.13 2.965 (4) 166
O8—H8B⋯O4 0.85 2.44 3.116 (4) 137
Symmetry codes: (ii) -x+1, -y+1, -z+2; (iii) -x+1, -y+1, -z+1; (iv) -x+2, -y+1, -z+1; (v) x, y+1, z; (vi) -x+1, -y, -z+1; (vii) x+1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

During the past two decades poly-carboxylic acid ligands have aroused great interest for chemists because many coordination polymers with this series of ligands have shown intriguing structures and potential applications in the optical, electric and magnetic areas. 5-methylpyrazine-2-carboxylic acid contains N and O donor atoms, which makes it a good building block for constructing functional materials. For example, Dong et al. (2000) use Cu(L)2(H2O) as a building block for constructing novel one-dimensional hetero-bimetallic Cu(II)–Ag(I) frameworks. Tanase et al. (2006) investigate the magnetic properties of Co(II), Ni(II) and Fe(II) compounds with HL, in structures where L is also involved in intricate supramolecular interactions. In this work we describe how using HL and corresponding silver(I) salts under hydrothermal conditions, a novel one-dimensional double silver(I) framework with Ag22-H2O)(H2O) cores can be isolated.

As is shown in Fig. 1, the title compound comprises two crystallographically independent silver(I) atoms, two deprotonated ligands L, one bridged coordinated water molecule, one terminal coordinated water molecule and two lattice water molecules. Ag1 is five-coordinated in the square-pyramidal geometry by two coordinated water molecules, one L nitrogen atom, one nitrogen atom and one carboxylate oxygen atom from a neighboring L. The coordinated water molecule O5 occupies the apical site and the other four atoms occupy the plane with the mean deviation of 0.0463 (1) Å. Ag1 lies above the plane at a distance of 0.3523 (2) Å. Ag2 is also five-coordinated in the square-pyramidal geometry by two L nitrogen atoms, two L carboxylate oxygen atoms and one bridged water molecule.

There exist two kinds of crystallographically different L ligands which make a dihedral angle of 13.786 (2)°. These ligands, in anti-parallel pairs, alternatively link Ag22-H2O)(H2O) cores, forming a novel one-dimensional double chain structure along the crystallographic [101] direction. The distances of Ag2—O5 and Ag2—O4 are longer than other Ag—O distances (Table 1). However all the Ag—N and Ag—O bond distances fall in the normal range.

The formation of this novel framework also reveals great potential in constructing silver(I) frameworks with HL. Solvent water molecules are key because they greatly affect the coordination geometries. Interestingly, although several Ni(II), Co(II) and Cd(II) compounds with HL have been prepared from solutions in water (Garribba et al., 2006; Shang et al.,2007; Liu et al., 2007; Ciurtin et al., 2003; Ciurtin et al., 2001; Ptasiewicz-Bak & Leciejewicz, 2000), such arrangement of different metal(II) coordination geometries induced by coordinated water molecules are not observed. This may be ascribed to the flexible and varied coordination geometries of silver atoms, i.e., a metal-directing effect.

The one-dimensional double chains of the title compound are extended into a three-dimensional supramolecular architecture by nine O—H···O hydrogen bonds (Table 2). The detailed environments of the O—H···O interactions are represented in Fig. 2. Lattice water molecule O7 acts as hydrogen bond donors to lattice water molecule O8 forming binuclear water clusters. As shown in Fig. 3, O—H···O hydrogen bonds from carboxylate oxygen atoms and lattice water molecules link the chains into a two-dimensional supramolecular sheet: O8 acts as hydrogen donor to two carboxylate oxygen atoms (O3 and O4) forming a C22(4) ring (Etter, 1990) and one carboxylate oxygen O1 of neighboring L ligands. O7 also acts as hydrogen bond acceptor to O5, O6 and acts as hydrogen bond donor to atom O3. Additionally O5 is also hydrogen bonded to O2 forming a strong O—H···O hydrogen bond, further consolidating the supramolecular sheet. Neighboring sheets are assembled into a three-dimensional supramolecular architecture by O6—H6B···O1 and O7—H7A···O8 hydrogen bonds (Fig. 3).

Besides classical O—H···O hydrogen bonds, also weaker non-classical C—H···O hydrogen bonds are observed (geometric details in Table 2), further extending the title compound into a three-dimensional supramolecular architecture. Additionally ππ stacking interactions are also be observed between two pyrazine groups with a distance of 3.643 (5) Å, which also help to stabilize the supramolecular architecture. The detailed environment of C—H···O interactions are also represented in Fig. 3.

Related literature top

For related literature, see: Ciurtin et al. (2001, 2003); Dong et al. (2000); Garribba et al. (2006); Liu et al. (2007); Ptasiewicz-Bak & Leciejewicz (2000); Shang et al. (2007); Tanase et al. (2006); Etter (1990).

Experimental top

{[Ag2(L)2(H2O)2]2H2O}n (I) was prepared under the hydrotheraml conditions. AgNO3 (0.2 mmol), 5-methylpyrazine-2-carboxylic acid (0.2 mmol) was added into a 25 ml reaction vessel. the reaction vessel was then sealed and subsequently placed in an oven for 140 h at 120°C. The well shaped colorless block crystals suitable for single-crystal X-ray diffraction analysis can be obtained.

Refinement top

H atoms of water molecules were placed in calculated positions as riding atoms attached to non-riding atoms with O—H distances of 0.85 Å and with Uiso(H) = 1.5Ueq(O). H atoms bound to C atoms were placed geometrically and refined using a riding model with C(methyl)—H = 0.93 Å and C(phenyl)—H = 0.96 Å. The methyl H atoms were treated with AFIX137.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A one-dimensional double chain structure of the title compound comprising the Ag2O2 core. [Symmetry codes: A 2 - x, 1 - y, 1 - z; B 1 - x, 1 - y, -z; C x - 1, y, z - 1.]. Displacement ellipsoids are drawn at the 15% probability level.
[Figure 2] Fig. 2. The detailed environment of O—H···O and C—H···O hydrogen bonds interactions.
[Figure 3] Fig. 3. Three-dimensional supramolecular architecture of the title compound. Hydrogen bonds are indicated by dashed lines.
catena-poly[[[µ-aqua-aquadisilver(I)]-bis(µ3-5-methylpyrazine-2- carboxylato)] dihydrate] top
Crystal data top
[Ag2(C6H5N2O2)2(H2O)2]·2H2OZ = 2
Mr = 562.04F(000) = 552
Triclinic, P1Dx = 2.185 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9481 (5) ÅCell parameters from 2098 reflections
b = 10.1827 (8) Åθ = 3.1–27.8°
c = 13.483 (1) ŵ = 2.34 mm1
α = 107.503 (1)°T = 293 K
β = 100.185 (1)°Block, colourless
γ = 103.164 (1)°0.24 × 0.20 × 0.16 mm
V = 854.4 (1) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
2982 independent reflections
Radiation source: fine-focus sealed tube2518 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 87
Tmin = 0.581, Tmax = 0.698k = 1212
4422 measured reflectionsl = 716
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0298P)2 + 0.2298P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.071(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.39 e Å3
2982 reflectionsΔρmin = 0.51 e Å3
236 parameters
Crystal data top
[Ag2(C6H5N2O2)2(H2O)2]·2H2Oγ = 103.164 (1)°
Mr = 562.04V = 854.4 (1) Å3
Triclinic, P1Z = 2
a = 6.9481 (5) ÅMo Kα radiation
b = 10.1827 (8) ŵ = 2.34 mm1
c = 13.483 (1) ÅT = 293 K
α = 107.503 (1)°0.24 × 0.20 × 0.16 mm
β = 100.185 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
2982 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2518 reflections with I > 2σ(I)
Tmin = 0.581, Tmax = 0.698Rint = 0.014
4422 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.07Δρmax = 0.39 e Å3
2982 reflectionsΔρmin = 0.51 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.51241 (5)0.71236 (3)0.76748 (2)0.04603 (12)
Ag20.92839 (4)0.50359 (3)1.21079 (2)0.04547 (11)
O10.6620 (4)0.2358 (3)0.8569 (2)0.0435 (6)
O20.8186 (4)0.2942 (3)1.0300 (2)0.0440 (6)
O30.2277 (4)0.2659 (3)0.5098 (2)0.0475 (7)
O40.3568 (4)0.4346 (3)0.6721 (2)0.0508 (7)
O50.1848 (4)0.7679 (3)0.7910 (2)0.0525 (7)
H5A0.14040.82060.76000.079*
H5B0.18490.78660.85680.079*
O60.7016 (5)0.9584 (3)0.7828 (3)0.0646 (9)
H6A0.80650.96400.75820.097*
H6B0.67531.03730.80910.097*
O70.9786 (4)0.0754 (3)0.3171 (2)0.0489 (7)
H7A0.87160.01250.31420.073*
H7B1.04550.13520.37980.073*
O80.3319 (4)0.1221 (3)0.6643 (3)0.0627 (8)
H8A0.43390.15760.71960.094*
H8B0.30650.17660.63010.094*
N10.6624 (4)0.6564 (3)0.9057 (2)0.0309 (6)
N20.8050 (4)0.5719 (3)1.0748 (2)0.0282 (6)
N30.3601 (4)0.6478 (3)0.5860 (2)0.0315 (6)
N40.1450 (4)0.5712 (3)0.3731 (2)0.0325 (6)
C10.6657 (5)0.5205 (3)0.8899 (3)0.0283 (7)
H10.61780.45310.82010.034*
C20.7365 (4)0.4767 (3)0.9722 (3)0.0268 (7)
C30.8019 (5)0.7062 (4)1.0902 (3)0.0327 (8)
H30.84840.77341.16010.039*
C40.7324 (5)0.7511 (4)1.0068 (3)0.0308 (7)
C50.7297 (6)0.9034 (4)1.0286 (3)0.0481 (10)
H5A'0.64570.90940.96630.072*
H5B'0.67480.93391.08920.072*
H5C'0.86680.96491.04420.072*
C60.7382 (5)0.3213 (4)0.9515 (3)0.0301 (7)
C70.3370 (5)0.7465 (4)0.5428 (3)0.0348 (8)
H70.39630.84360.58520.042*
C80.2759 (5)0.5087 (4)0.5229 (3)0.0290 (7)
C90.1744 (5)0.4725 (4)0.4164 (3)0.0323 (7)
H90.12420.37550.37270.039*
C100.2270 (5)0.7099 (4)0.4361 (3)0.0325 (8)
C110.1903 (6)0.8224 (4)0.3919 (3)0.0446 (9)
H11A0.04620.81160.37390.067*
H11B0.23890.81170.32840.067*
H11C0.26230.91640.44510.067*
C120.2901 (5)0.3943 (4)0.5726 (3)0.0337 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0615 (2)0.04191 (18)0.02887 (17)0.01567 (14)0.00615 (14)0.01461 (14)
Ag20.0587 (2)0.04844 (19)0.02474 (17)0.01533 (15)0.00451 (14)0.01602 (14)
O10.0578 (16)0.0322 (13)0.0318 (14)0.0159 (12)0.0002 (12)0.0042 (12)
O20.0594 (16)0.0437 (15)0.0361 (15)0.0211 (13)0.0066 (13)0.0235 (13)
O30.0637 (17)0.0331 (15)0.0403 (15)0.0112 (13)0.0052 (14)0.0129 (13)
O40.0679 (17)0.0483 (16)0.0298 (15)0.0125 (13)0.0072 (13)0.0203 (13)
O50.0775 (19)0.0463 (16)0.0371 (15)0.0244 (14)0.0124 (14)0.0168 (13)
O60.085 (2)0.0323 (15)0.085 (2)0.0153 (14)0.0464 (19)0.0196 (16)
O70.0594 (16)0.0432 (15)0.0392 (16)0.0134 (13)0.0068 (13)0.0128 (13)
O80.0576 (17)0.0515 (17)0.076 (2)0.0076 (14)0.0009 (16)0.0351 (17)
N10.0363 (15)0.0281 (15)0.0233 (15)0.0079 (12)0.0021 (12)0.0093 (12)
N20.0315 (14)0.0321 (15)0.0185 (14)0.0094 (12)0.0025 (12)0.0078 (12)
N30.0347 (15)0.0332 (16)0.0236 (15)0.0097 (12)0.0001 (12)0.0107 (13)
N40.0339 (15)0.0387 (17)0.0248 (15)0.0108 (13)0.0034 (12)0.0137 (13)
C10.0310 (17)0.0273 (17)0.0220 (17)0.0086 (14)0.0012 (14)0.0054 (14)
C20.0208 (15)0.0322 (18)0.0238 (17)0.0060 (13)0.0006 (13)0.0097 (15)
C30.0385 (18)0.0325 (18)0.0203 (17)0.0102 (15)0.0018 (15)0.0036 (15)
C40.0318 (17)0.0305 (18)0.0285 (18)0.0096 (14)0.0031 (15)0.0109 (15)
C50.073 (3)0.0265 (19)0.036 (2)0.0127 (18)0.001 (2)0.0071 (17)
C60.0303 (17)0.0310 (18)0.033 (2)0.0109 (14)0.0105 (15)0.0143 (16)
C70.0382 (19)0.0315 (18)0.0309 (19)0.0081 (15)0.0041 (16)0.0105 (16)
C80.0245 (16)0.0384 (19)0.0276 (18)0.0127 (14)0.0065 (14)0.0143 (16)
C90.0357 (18)0.0324 (18)0.0274 (18)0.0125 (15)0.0046 (15)0.0093 (15)
C100.0319 (17)0.040 (2)0.0323 (19)0.0138 (15)0.0096 (15)0.0196 (17)
C110.057 (2)0.042 (2)0.039 (2)0.0143 (18)0.0074 (19)0.0222 (19)
C120.0296 (17)0.037 (2)0.037 (2)0.0119 (15)0.0048 (15)0.0170 (17)
Geometric parameters (Å, º) top
Ag1—N12.260 (3)N2—C21.353 (4)
Ag1—N32.311 (3)N3—C71.330 (4)
Ag1—O62.478 (3)N3—C81.339 (4)
Ag1—O52.517 (3)N4—C101.335 (4)
Ag1—O42.598 (3)N4—C91.340 (4)
Ag2—N4i2.233 (3)N4—Ag2iii2.233 (3)
Ag2—N22.250 (3)C1—C21.369 (4)
Ag2—O22.558 (3)C1—H10.9300
Ag2—O5ii2.688 (3)C2—C61.525 (4)
Ag2—O4ii2.809 (3)C3—C41.387 (5)
O1—C61.244 (4)C3—H30.9300
O2—C61.244 (4)C4—C51.495 (5)
O3—C121.249 (4)C5—H5A'0.9600
O4—C121.243 (4)C5—H5B'0.9600
O5—H5A0.8500C5—H5C'0.9600
O5—H5B0.8500C7—C101.396 (5)
O6—H6A0.8500C7—H70.9300
O6—H6B0.8500C8—C91.378 (5)
O7—H7A0.8501C8—C121.521 (5)
O7—H7B0.8501C9—H90.9300
O8—H8A0.8499C10—C111.491 (5)
O8—H8B0.8499C11—H11A0.9600
N1—C41.336 (4)C11—H11B0.9600
N1—C11.342 (4)C11—H11C0.9600
N2—C31.326 (4)
N1—Ag1—N3149.97 (10)N2—C2—C6118.5 (3)
N1—Ag1—O6110.25 (10)C1—C2—C6121.6 (3)
N3—Ag1—O692.51 (10)N2—C3—C4123.0 (3)
N1—Ag1—O5111.71 (9)N2—C3—H3118.5
N3—Ag1—O583.98 (9)C4—C3—H3118.5
O6—Ag1—O595.92 (9)N1—C4—C3119.7 (3)
N1—Ag1—O484.35 (9)N1—C4—C5119.3 (3)
N3—Ag1—O467.85 (9)C3—C4—C5120.9 (3)
O6—Ag1—O4154.82 (9)C4—C5—H5A'109.5
O5—Ag1—O497.40 (9)C4—C5—H5B'109.5
N4i—Ag2—N2146.43 (10)H5A'—C5—H5B'109.5
N4i—Ag2—O2138.04 (9)C4—C5—H5C'109.5
N2—Ag2—O269.03 (9)H5A'—C5—H5C'109.5
C6—O2—Ag2114.8 (2)H5B'—C5—H5C'109.5
C12—O4—Ag1114.3 (2)O2—C6—O1127.0 (3)
Ag1—O5—H5A119.7O2—C6—C2116.9 (3)
Ag1—O5—H5B108.3O1—C6—C2116.1 (3)
H5A—O5—H5B116.9N3—C7—C10122.5 (3)
Ag1—O6—H6A115.2N3—C7—H7118.8
Ag1—O6—H6B128.7C10—C7—H7118.8
H6A—O6—H6B116.2N3—C8—C9119.8 (3)
H7A—O7—H7B115.7N3—C8—C12118.5 (3)
H8A—O8—H8B117.8C9—C8—C12121.7 (3)
C4—N1—C1117.3 (3)N4—C9—C8122.8 (3)
C4—N1—Ag1122.3 (2)N4—C9—H9118.6
C1—N1—Ag1120.1 (2)C8—C9—H9118.6
C3—N2—C2117.1 (3)N4—C10—C7119.7 (3)
C3—N2—Ag2122.3 (2)N4—C10—C11118.8 (3)
C2—N2—Ag2120.5 (2)C7—C10—C11121.4 (3)
C7—N3—C8117.7 (3)C10—C11—H11A109.5
C7—N3—Ag1121.3 (2)C10—C11—H11B109.5
C8—N3—Ag1120.7 (2)H11A—C11—H11B109.5
C10—N4—C9117.4 (3)C10—C11—H11C109.5
C10—N4—Ag2iii121.7 (2)H11A—C11—H11C109.5
C9—N4—Ag2iii120.3 (2)H11B—C11—H11C109.5
N1—C1—C2122.9 (3)O4—C12—O3125.0 (3)
N1—C1—H1118.6O4—C12—C8118.0 (3)
C2—C1—H1118.6O3—C12—C8116.9 (3)
N2—C2—C1119.9 (3)
N4i—Ag2—O2—C6159.0 (2)Ag2—N2—C3—C4177.9 (2)
N2—Ag2—O2—C63.8 (2)C1—N1—C4—C30.9 (5)
N1—Ag1—O4—C12162.1 (3)Ag1—N1—C4—C3172.7 (2)
N3—Ag1—O4—C126.3 (2)C1—N1—C4—C5179.3 (3)
O6—Ag1—O4—C1234.7 (4)Ag1—N1—C4—C55.7 (4)
O5—Ag1—O4—C1286.7 (2)N2—C3—C4—N10.8 (5)
N3—Ag1—N1—C4178.7 (2)N2—C3—C4—C5179.2 (3)
O6—Ag1—N1—C441.6 (3)Ag2—O2—C6—O1175.6 (3)
O5—Ag1—N1—C463.7 (3)Ag2—O2—C6—C25.9 (3)
O4—Ag1—N1—C4159.5 (3)N2—C2—C6—O25.7 (4)
N3—Ag1—N1—C17.9 (4)C1—C2—C6—O2175.1 (3)
O6—Ag1—N1—C1144.9 (2)N2—C2—C6—O1175.7 (3)
O5—Ag1—N1—C1109.7 (2)C1—C2—C6—O13.6 (4)
O4—Ag1—N1—C114.0 (2)C8—N3—C7—C101.0 (5)
N4i—Ag2—N2—C327.5 (3)Ag1—N3—C7—C10173.2 (2)
O2—Ag2—N2—C3177.1 (3)C7—N3—C8—C91.7 (5)
N4i—Ag2—N2—C2150.2 (2)Ag1—N3—C8—C9175.9 (2)
O2—Ag2—N2—C20.6 (2)C7—N3—C8—C12176.5 (3)
N1—Ag1—N3—C7164.1 (2)Ag1—N3—C8—C122.3 (4)
O6—Ag1—N3—C723.9 (3)C10—N4—C9—C83.1 (5)
O5—Ag1—N3—C771.8 (3)Ag2iii—N4—C9—C8167.9 (2)
O4—Ag1—N3—C7172.4 (3)N3—C8—C9—N43.9 (5)
N1—Ag1—N3—C821.9 (3)C12—C8—C9—N4174.3 (3)
O6—Ag1—N3—C8162.1 (2)C9—N4—C10—C70.4 (5)
O5—Ag1—N3—C8102.2 (2)Ag2iii—N4—C10—C7170.5 (2)
O4—Ag1—N3—C81.7 (2)C9—N4—C10—C11177.6 (3)
C4—N1—C1—C20.1 (5)Ag2iii—N4—C10—C116.7 (4)
Ag1—N1—C1—C2173.6 (2)N3—C7—C10—N41.6 (5)
C3—N2—C2—C10.8 (4)N3—C7—C10—C11175.4 (3)
Ag2—N2—C2—C1178.7 (2)Ag1—O4—C12—O3172.6 (3)
C3—N2—C2—C6179.9 (3)Ag1—O4—C12—C89.6 (4)
Ag2—N2—C2—C62.1 (4)N3—C8—C12—O48.6 (5)
N1—C1—C2—N20.7 (5)C9—C8—C12—O4169.5 (3)
N1—C1—C2—C6180.0 (3)N3—C8—C12—O3173.4 (3)
C2—N2—C3—C40.1 (5)C9—C8—C12—O38.4 (5)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+2; (iii) x1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O40.932.383.061 (4)130
O5—H5B···O2ii0.851.942.675 (4)144
O5—H5A···O7iv0.851.912.756 (4)175
O6—H6A···O7v0.852.002.828 (4)166
O6—H6B···O1vi0.851.962.794 (4)168
O7—H7A···O8vii0.851.862.698 (4)168
O7—H7B···O3viii0.851.872.712 (4)171
O8—H8A···O10.852.022.867 (4)176
O8—H8B···O30.852.132.965 (4)166
O8—H8B···O40.852.443.116 (4)137
Symmetry codes: (ii) x+1, y+1, z+2; (iv) x+1, y+1, z+1; (v) x+2, y+1, z+1; (vi) x, y+1, z; (vii) x+1, y, z+1; (viii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ag2(C6H5N2O2)2(H2O)2]·2H2O
Mr562.04
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.9481 (5), 10.1827 (8), 13.483 (1)
α, β, γ (°)107.503 (1), 100.185 (1), 103.164 (1)
V3)854.4 (1)
Z2
Radiation typeMo Kα
µ (mm1)2.34
Crystal size (mm)0.24 × 0.20 × 0.16
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.581, 0.698
No. of measured, independent and
observed [I > 2σ(I)] reflections
4422, 2982, 2518
Rint0.014
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.071, 1.07
No. of reflections2982
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.51

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ag1—N12.260 (3)Ag2—N4i2.233 (3)
Ag1—N32.311 (3)Ag2—N22.250 (3)
Ag1—O62.478 (3)Ag2—O22.558 (3)
Ag1—O52.517 (3)Ag2—O5ii2.688 (3)
Ag1—O42.598 (3)Ag2—O4ii2.809 (3)
N1—Ag1—N3149.97 (10)N3—Ag1—O467.85 (9)
N1—Ag1—O6110.25 (10)O6—Ag1—O4154.82 (9)
N3—Ag1—O692.51 (10)O5—Ag1—O497.40 (9)
N1—Ag1—O5111.71 (9)N4i—Ag2—N2146.43 (10)
N3—Ag1—O583.98 (9)N4i—Ag2—O2138.04 (9)
O6—Ag1—O595.92 (9)N2—Ag2—O269.03 (9)
N1—Ag1—O484.35 (9)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O40.932.383.061 (4)130
O5—H5B···O2ii0.851.942.675 (4)144
O5—H5A···O7iii0.851.912.756 (4)175
O6—H6A···O7iv0.852.002.828 (4)166
O6—H6B···O1v0.851.962.794 (4)168
O7—H7A···O8vi0.851.862.698 (4)168
O7—H7B···O3vii0.851.872.712 (4)171
O8—H8A···O10.852.022.867 (4)176
O8—H8B···O30.852.132.965 (4)166
O8—H8B···O40.852.443.116 (4)137
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x+2, y+1, z+1; (v) x, y+1, z; (vi) x+1, y, z+1; (vii) x+1, y, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 20775047).

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCiurtin, D. M., Smith, M. D. & zur Loye, H.-C. (2001). Inorg. Chim. Acta, 324, 46–49.  Web of Science CSD CrossRef CAS Google Scholar
First citationCiurtin, D. M., Smith, M. D. & zur Loye, H.-C. (2003). Polyhedron, 22, 3043–3049.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, Y. B., Smith, M. D. & zur Loye, H.-C. (2000). Inorg. Chem. 39, 1943–1949.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationGarribba, E., Micera, G., Lodyga-Chruscinska, E. & Sanna, D. (2006). Eur. J. Inorg. Chem. 13, 2690–2696.  Web of Science CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation,Tokyo, Japan.  Google Scholar
First citationLiu, F.-Y., Shang, R.-L., Du, L., Zhao, Q.-H. & Fang, R.-B. (2007). Acta Cryst. E63, m120–m122.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPtasiewicz-Bak, H. & Leciejewicz, J. (2000). J. Coord. Chem. 49, 301–307.  Web of Science CrossRef CAS Google Scholar
First citationShang, R.-L., Liu, F.-Y., Du, L., Li, X.-B. & Sun, B.-W. (2007). Acta Cryst. E63, m190–m192.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanase, S., Van Son, M., Van Albada, G. A., De Gelder, R., Bouwman, E. & Reedijk, J. (2006). Polyhedron, 25, 2967–2975.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1312-m1313
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds