organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(Methyl­sulfan­yl)meth­yl]-1,2-benz­iso­thia­zol-3(2H)-one 1,1-dioxide

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, bDepartment of Chemistry, University of Science and Technology, Bannu, Pakistan, cInstitute of Chemistry, University of the Punjab, Lahore, Pakistan, and dDepartment of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: waseeq_786@yahoo.com

(Received 16 August 2008; accepted 3 September 2008; online 6 September 2008)

In the title mol­ecule, C9H9NO3S2, the essentially planar benzisothia­zole ring system and the C—S—C atoms of the methyl­sulfanyl side chain form an angle of 64.45 (7)°. The structure is devoid of any classical hydrogen bonding. However, weak non-classical inter- and intra­molecular hydrogen bonds of the type C—H⋯O are present.

Related literature

For related literature, see: Bernstein et al. (1994[Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 431-507. New York: VCH.]); Masashi et al. (1999[Masashi, K., Hideo, T., Kentaro, Y. & Masataka, Y. (1999). Tetrahedron, 55, 14885-14900.]); Nagasawa et al. (1995[Nagasawa, H. T., Kawle, S. P., Elberling, J. A., DeMaster, E. G. & Fukuto, J. M. (1995). J. Med. Chem. 38, 1865-1871.]); Siddiqui et al. (2007a[Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Parvez, M. (2007a). Acta Cryst. E63, o4116.],b[Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007b). Acta Cryst. E63, o4001.], 2008a[Siddiqui, W. A., Ahmad, S., Siddiqui, H. L. & Parvez, M. (2008a). Acta Cryst. E64, o724.],b[Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Parvez, M. & Rashid, R. (2008b). Acta Cryst. E64, o859.]); Xu et al. (2006[Xu, L., Shu, H., Liu, Y., Zhang, S. & Trudell, M. (2006). Tetrahedron, 62, 7902-7910.]); Liang (2006[Liang, X., Hong, S., Ying, L., Suhong, Z. & Mark, L. T. (2006). Tetrahedron, 62, 7902-7910]).

[Scheme 1]

Experimental

Crystal data
  • C9H9NO3S2

  • Mr = 243.29

  • Monoclinic, P 21 /c

  • a = 7.550 (3) Å

  • b = 17.332 (8) Å

  • c = 9.455 (3) Å

  • β = 124.26 (2)°

  • V = 1022.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 173 (2) K

  • 0.18 × 0.16 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.915, Tmax = 0.970

  • 3975 measured reflections

  • 2322 independent reflections

  • 2004 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.094

  • S = 1.05

  • 2322 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.95 2.49 3.390 (2) 158
C9—H9B⋯O3 0.98 2.56 3.383 (3) 142
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,2-benzisothiazole-3-one 1,1-dioxide (saccharin) has been identified as an important molecular component in various classes of 5-HTla antagonists, analgesics and human mast cell tryptase inhibitors (Liang et al., 2006). Particularly, the substituted derivatives with e.g. N-hydroxy and N-alkyl substutuents have shown important biological activities (Nagasawa et al., 1995). Various biologically important saccharin skeletons and their N-alkyl derivatives were efficiently prepared (Xu et al., 2006) by chromium oxide-catalyzed oxidation of N-alkyl(o-methyl)arenesulfonamides in acetonitrile besides the already developed methodology utilizing irradiation techniques (Masashi et al., 1999) for similar type of conversions. In continuation of our research program on the synthesis of benzisothiazole derivatives (Siddiqui et al., 2007a,b,2008a,b), we report the synthesis (see Fig. 3) and crystal structure of the title compound, in this paper.

In the molecular structure (Fig. 1) the benzisothiazole rings system is essentially planar, the maximum deviation of any atom from the mean plane through S1/N1/C1–C7 being 0.0224 (8) Å for atom S1. The side chain comprising of atoms S2/C8/C9 is inclined at an angle 64.45 (7)° with the mean-plane of the benzisothiazole rings system. The structure is devoid of any classical hydrogen bonding. However, non-classical intermolecular hydrogen bond of the type C—H···O are present resulting in dimeric units in an R22(8) motif (Bernstein et al., 1994). In addition, intramolecular hydrogen bonds of the type C—H···O are also present in the structure resulting in an S(7) pattern (Bernstein et al., 1994) (details are in Fig. 2 and Table 1).

Related literature top

For related literature, see: Bernstein et al. (1994); Masashi et al. (1999); Nagasawa et al. (1995); Siddiqui et al. (2007a,b, 2008a,b); Xu et al. (2006); Liang (2006).

Experimental top

A suspension of saccharin (I) (1.0 g, 5.46 mmol), sodium sulfite (1.4 g, 10.93 mmol) and an excess of 2-chloro-5-methylaniline (5 ml) was first stirred at room temperature (30 min.) and then under reflux (1.5 hrs). The reaction mixture turned orange red after reflux. Cooled the reaction mixture to room temperature and extracted the product with chloroform (3 X 25 ml). Concentrated the organic layer under reduced pressure (11 torr) to get light yellow product (II) (0.6 g, 2.46 mmol), yield = 45%. Recrystallization Solvent: MeOH:CH3CN (1:1). The solution was subjected to slow evaporation at 313 K to obtain colorless crystals.

Refinement top

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms were included at geometrically idealized positions and refined in riding-model approximation with the following constraints: aryl, methyl and methylene C—H distances were set to 0.95, 0.98 and 0.99 Å, respectively; in all these instances Uiso(H) = 1.2 Ueq(C). The final difference map was free of any chemically significant features.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: HKL DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) drawing of the title compound with displacement ellipsoids plotted at 50% probability level.
[Figure 2] Fig. 2. Hydrogen bonding interactions in the unit cell of the title compound indicated by dashed lines, H-atoms not involved in H-bonds have been excluded.
[Figure 3] Fig. 3. Reaction scheme.
2-[(Methylsulfanyl)methyl]-1,2-benzisothiazol-3(2H)-one 1,1-dioxide top
Crystal data top
C9H9NO3S2F(000) = 504
Mr = 243.29Dx = 1.580 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2322 reflections
a = 7.550 (3) Åθ = 4.0–27.5°
b = 17.332 (8) ŵ = 0.51 mm1
c = 9.455 (3) ÅT = 173 K
β = 124.26 (2)°Plate, colourless
V = 1022.6 (7) Å30.18 × 0.16 × 0.06 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2322 independent reflections
Radiation source: fine-focus sealed tube2004 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and ϕ scansθmax = 27.5°, θmin = 4.0°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 99
Tmin = 0.915, Tmax = 0.970k = 2219
3975 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.048P)2 + 0.474P]
where P = (Fo2 + 2Fc2)/3
2322 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C9H9NO3S2V = 1022.6 (7) Å3
Mr = 243.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.550 (3) ŵ = 0.51 mm1
b = 17.332 (8) ÅT = 173 K
c = 9.455 (3) Å0.18 × 0.16 × 0.06 mm
β = 124.26 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2322 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
2004 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.970Rint = 0.024
3975 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.05Δρmax = 0.29 e Å3
2322 reflectionsΔρmin = 0.45 e Å3
136 parameters
Special details top

Experimental. m.p. 405–406 K; IR (KBr, νmax, cm-1): CO 1731 (s), SO2 1332 and 1177; 1H-NMR (400 MHz, DMSO-d6) δ: 2.28 (s, 3H, CH3), 4.90 (s, 2H, CH2), 7.98–8.07 (m, 3H, aromatic), 8.13–8.34 (m, 1H, aromatic); 13C-NMR (100 MHz, DMSO-d6) δ: 158.3, 136.7, 135.9, 135.3, 125.9, 125.1, 121.6, 42.6, 15.5 LRMS (ES+): m/z: 244 [M]+ (63.5%).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.06232 (7)0.08010 (3)0.35109 (5)0.02244 (14)
S21.41986 (7)0.24291 (3)0.32581 (6)0.02667 (14)
O10.9265 (2)0.19480 (7)0.03395 (16)0.0267 (3)
O20.9634 (2)0.10390 (9)0.43595 (17)0.0340 (3)
O31.2696 (2)0.04531 (9)0.45436 (16)0.0328 (3)
N11.0689 (2)0.15451 (9)0.24102 (18)0.0235 (3)
C10.8872 (3)0.02719 (10)0.1645 (2)0.0197 (3)
C20.8048 (3)0.04560 (11)0.1537 (2)0.0244 (4)
H20.84360.07410.25300.029*
C30.6623 (3)0.07501 (10)0.0102 (2)0.0255 (4)
H30.60230.12480.02310.031*
C40.6060 (3)0.03308 (11)0.1554 (2)0.0249 (4)
H40.50690.05430.26550.030*
C50.6929 (3)0.03959 (11)0.1413 (2)0.0224 (4)
H50.65590.06800.24040.027*
C60.8348 (3)0.06950 (10)0.0209 (2)0.0192 (3)
C70.9421 (3)0.14577 (10)0.0633 (2)0.0202 (3)
C81.1816 (3)0.22693 (11)0.3227 (2)0.0253 (4)
H8A1.22150.22730.44200.030*
H8B1.08170.27040.26180.030*
C91.6129 (3)0.18644 (12)0.5098 (2)0.0320 (4)
H9A1.75290.18990.52610.038*
H9B1.56640.13250.49160.038*
H9C1.62440.20630.61170.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0225 (2)0.0275 (2)0.0162 (2)0.00213 (16)0.01023 (18)0.00010 (16)
S20.0260 (3)0.0289 (3)0.0266 (2)0.00508 (18)0.0157 (2)0.00217 (18)
O10.0280 (7)0.0252 (7)0.0258 (6)0.0001 (5)0.0145 (6)0.0052 (5)
O20.0433 (8)0.0417 (8)0.0282 (7)0.0045 (7)0.0270 (6)0.0055 (6)
O30.0238 (7)0.0406 (8)0.0223 (6)0.0006 (6)0.0059 (6)0.0055 (6)
N10.0253 (8)0.0243 (8)0.0186 (7)0.0056 (6)0.0109 (6)0.0024 (6)
C10.0178 (8)0.0236 (9)0.0176 (7)0.0014 (6)0.0099 (7)0.0003 (6)
C20.0266 (9)0.0235 (9)0.0255 (8)0.0020 (7)0.0160 (8)0.0046 (7)
C30.0251 (9)0.0205 (9)0.0324 (9)0.0007 (7)0.0172 (8)0.0016 (7)
C40.0222 (8)0.0275 (9)0.0212 (8)0.0011 (7)0.0099 (7)0.0046 (7)
C50.0216 (8)0.0258 (9)0.0180 (8)0.0017 (7)0.0102 (7)0.0012 (7)
C60.0169 (8)0.0223 (8)0.0187 (8)0.0013 (6)0.0101 (7)0.0009 (6)
C70.0174 (8)0.0231 (9)0.0204 (8)0.0017 (6)0.0108 (7)0.0010 (6)
C80.0231 (9)0.0247 (9)0.0272 (9)0.0027 (7)0.0135 (8)0.0067 (7)
C90.0227 (9)0.0401 (11)0.0274 (9)0.0025 (8)0.0106 (8)0.0025 (8)
Geometric parameters (Å, º) top
S1—O31.4304 (15)C3—C41.392 (3)
S1—O21.4306 (14)C3—H30.9500
S1—N11.6754 (16)C4—C51.392 (3)
S1—C11.7537 (18)C4—H40.9500
S2—C81.804 (2)C5—C61.385 (2)
S2—C91.804 (2)C5—H50.9500
O1—C71.208 (2)C6—C71.483 (2)
N1—C71.397 (2)C8—H8A0.9900
N1—C81.468 (2)C8—H8B0.9900
C1—C21.385 (3)C9—H9A0.9800
C1—C61.390 (2)C9—H9B0.9800
C2—C31.393 (3)C9—H9C0.9800
C2—H20.9500
O3—S1—O2117.06 (9)C6—C5—C4118.30 (16)
O3—S1—N1110.18 (8)C6—C5—H5120.9
O2—S1—N1109.50 (9)C4—C5—H5120.9
O3—S1—C1112.44 (9)C5—C6—C1120.09 (16)
O2—S1—C1112.28 (9)C5—C6—C7126.71 (15)
N1—S1—C192.68 (8)C1—C6—C7113.20 (15)
C8—S2—C9100.92 (9)O1—C7—N1123.12 (16)
C7—N1—C8121.81 (15)O1—C7—C6128.06 (15)
C7—N1—S1115.07 (12)N1—C7—C6108.81 (14)
C8—N1—S1122.85 (12)N1—C8—S2114.65 (12)
C2—C1—C6122.64 (16)N1—C8—H8A108.6
C2—C1—S1127.13 (13)S2—C8—H8A108.6
C6—C1—S1110.22 (13)N1—C8—H8B108.6
C1—C2—C3116.69 (16)S2—C8—H8B108.6
C1—C2—H2121.7H8A—C8—H8B107.6
C3—C2—H2121.7S2—C9—H9A109.5
C2—C3—C4121.45 (17)S2—C9—H9B109.5
C2—C3—H3119.3H9A—C9—H9B109.5
C4—C3—H3119.3S2—C9—H9C109.5
C5—C4—C3120.82 (16)H9A—C9—H9C109.5
C5—C4—H4119.6H9B—C9—H9C109.5
C3—C4—H4119.6
O3—S1—N1—C7116.17 (13)C4—C5—C6—C10.0 (3)
O2—S1—N1—C7113.73 (13)C4—C5—C6—C7179.11 (16)
C1—S1—N1—C71.06 (13)C2—C1—C6—C50.8 (3)
O3—S1—N1—C869.74 (16)S1—C1—C6—C5178.13 (13)
O2—S1—N1—C860.36 (16)C2—C1—C6—C7179.96 (15)
C1—S1—N1—C8175.15 (14)S1—C1—C6—C71.10 (18)
O3—S1—C1—C266.76 (18)C8—N1—C7—O14.5 (3)
O2—S1—C1—C267.75 (18)S1—N1—C7—O1178.63 (14)
N1—S1—C1—C2179.89 (16)C8—N1—C7—C6174.75 (14)
O3—S1—C1—C6114.36 (13)S1—N1—C7—C60.59 (17)
O2—S1—C1—C6111.13 (13)C5—C6—C7—O10.4 (3)
N1—S1—C1—C61.22 (13)C1—C6—C7—O1179.53 (17)
C6—C1—C2—C30.8 (3)C5—C6—C7—N1178.80 (16)
S1—C1—C2—C3177.98 (13)C1—C6—C7—N10.37 (19)
C1—C2—C3—C40.0 (3)C7—N1—C8—S276.41 (19)
C2—C3—C4—C50.8 (3)S1—N1—C8—S2109.89 (14)
C3—C4—C5—C60.8 (3)C9—S2—C8—N182.19 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.952.493.390 (2)158
C9—H9B···O30.982.563.383 (3)142
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC9H9NO3S2
Mr243.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)7.550 (3), 17.332 (8), 9.455 (3)
β (°) 124.26 (2)
V3)1022.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.18 × 0.16 × 0.06
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.915, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
3975, 2322, 2004
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.05
No. of reflections2322
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.45

Computer programs: COLLECT (Hooft, 1998), HKL DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.952.493.390 (2)158
C9—H9B···O30.982.563.383 (3)142
Symmetry code: (i) x+2, y, z+1.
 

References

First citationBernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 431–507. New York: VCH.  Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLiang, X., Hong, S., Ying, L., Suhong, Z. & Mark, L. T. (2006). Tetrahedron, 62, 7902–7910  Google Scholar
First citationMasashi, K., Hideo, T., Kentaro, Y. & Masataka, Y. (1999). Tetrahedron, 55, 14885–14900.  Google Scholar
First citationNagasawa, H. T., Kawle, S. P., Elberling, J. A., DeMaster, E. G. & Fukuto, J. M. (1995). J. Med. Chem. 38, 1865–1871.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Parvez, M. (2007a). Acta Cryst. E63, o4116.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Siddiqui, H. L. & Parvez, M. (2008a). Acta Cryst. E64, o724.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Siddiqui, H. L., Parvez, M. & Rashid, R. (2008b). Acta Cryst. E64, o859.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007b). Acta Cryst. E63, o4001.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, L., Shu, H., Liu, Y., Zhang, S. & Trudell, M. (2006). Tetrahedron, 62, 7902–7910.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds