Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tricyclo[6.2.1.0^{2,7}]undeca-4,9-diene-3,6dione

Chongchen Wang

School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, 100044 Beijing, People's Republic of China Correspondence e-mail: chongchenwang@126.com

Received 8 September 2008; accepted 19 September 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.066; wR factor = 0.210; data-to-parameter ratio = 16.4.

The title compound, C₁₁H₁₀O₂, crystallizes with two independent molecules in the asymmetric unit. In one molecule, the dihedral angle between the mean planes of the C-C=C-Cgroup of the diene unit and essentially planar cyclohexene ring is 51.07 (9)°, while in the other molecule it is 54.49 (12)°. In the crystal structure, weak intermolecular C-H···O interactions link the molecules into columns along the b axis.

Related literature

For background information, see: Ito et al. (2007); Mgani et al. (1995).

Experimental

Crystal data

 $C_{11}H_{10}O_2$ $M_r = 174.19$ Monoclinic, $P2_1/c$ a = 15.649 (3) Å b = 6.5399 (13) Åc = 21.448 (7) Å $\beta = 125.05 \ (2)^{\circ}$

V = 1797.0 (8) Å³ Z = 8Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 293 (2) K $0.52 \times 0.12 \times 0.11 \text{ mm}$

6936 measured reflections

 $R_{\rm int} = 0.036$

4119 independent reflections

2664 reflections with $I > 2\sigma(I)$

Data collection

Rigaku R-AXIS RAPID IP areadetector diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\rm min} = 0.956, T_{\rm max} = 0.990$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.066$	251 parameters
$wR(F^2) = 0.210$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$
4119 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2 - H2A \cdots O4^{i}$ $C6 - H6A \cdots O2^{ii}$ $C11 - H11A \cdots O3^{iii}$ $C16 - H16A \cdots O1^{i}$	0.93 0.98 0.93 0.98	2.58 2.53 2.58 2.59	3.502 (3) 3.446 (3) 3.335 (4) 3.416 (3)	172 155 138 142
$C17 - H17A \cdots O4^{iv}$	0.98	2.51	3.319 (3)	140

Symmetry codes: (i) -x + 1, -y, -z; (ii) x, y + 1, z; (iii) $x, -y - \frac{1}{2}, z + \frac{1}{2}$; (iv) x, y - 1, z

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

The author gratefully acknowledges financial support by the Beijing Academic Innovation Group in Sustainable Water/ Waste Recycling Technologies (grant No. BJE10016200611), the Research Fund of Beijing University of Civil Engineering and Architecture (grant No. 100700502) and the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (grant No. BJE10016200611).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2695).

References

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Ito, F. M., Petroni, J. M., de Lima, D. P., Beatriz, A., Marques, M. R., de Moraes, M. O., Costa-Lotufo, L. V., Montenegro, R. C., Magalhães, H. I. F., do, Ó. & Pessoa, C. (2007). Molecules, 12, 271-282.

Mgani, Q. A., Nkunya, M., Zwanenburg, B. & Klunder, A. (1995). Tetrahedron Lett. 26, 4661-4664.

Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supporting information

Acta Cryst. (2008). E64, o2002 [doi:10.1107/S1600536808030249]

Tricyclo[6.2.1.0^{2,7}]undeca-4,9-diene-3,6-dione

Chongchen Wang

S1. Comment

The title compound, tricyclo[6.2.1.0^{2,7}]undeca-4,9-diene-3,6 -dione formed by the cycloaddition between cyclopentadiene and *p*-benzoquinone has been investigated widely (Ito *et al.* 2007; Mgani, *et al.* 1995). One of the unique aspect of the title compound is its high molecular symmetry, which allows for facile selective reactions at one or both carbonyl groups by means of classical and non-classical reagents. Another feature to be considered is its cage-like framework, which forces functional groups into close spatial proximity, facilitating subsequent reactions (Ito *et al.* 2007).

The title compound crystallizes with two independent molecules in the asymmetric unit, as shown in Fig.1. In one molecule, the dihedral angle between the mean planes of C-C=C-C group of the diene unit and essentially planar cyclohexene ring is [C1-C6] 51.07 (9)° while in the other [C12-C17] it is 54.49 (12)°. In the crystal structure, weak intermolecular C—H…O interactions link the molecules into columns along the b-axis (Fig.2).

S2. Experimental

Tricyclo[$6.2.1.0^{2,7}$]undeca-4,9-diene-3,6-dione was obtained by the method described in the literature (Ito *et al.* 2007). The crystals of the title compound was recrystallized from hexane under low temperature (273.15 K).

S3. Refinement

All H atoms were fixed geometrically, with C—H distances of 0.93–98 Å with a mixture of treatments for the isotropic displacement parameters. In most case the isotropic displacement parameters were refined but in a few cases the value of $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The asymmetric unit of the title compound, showing atoms labelling. Displacement ellipoids are drawn at the 50% probability level.

Figure 2

Packing diagram.

Tricyclo[6.2.1.0^{2,7}]undeca-4,9-diene-3,6-dione

Crystal data

V = 1797.0 (8) Å³ $C_{11}H_{10}O_2$ $M_r = 174.19$ Z = 8Monoclinic, $P2_1/c$ F(000) = 736 $D_{\rm x} = 1.288 {\rm Mg} {\rm m}^{-3}$ Hall symbol: -P 2ybc a = 15.649 (3) ÅMo *K* α radiation, $\lambda = 0.71073$ Å *b* = 6.5399 (13) Å Cell parameters from 16732 reflections c = 21.448 (7) Å $\theta = 1.6 - 27.5^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ $\beta = 125.05 \ (2)^{\circ}$

T = 293 KNeedle, dark brown

Data collection

Rigaku R-AXIS RAPID IP area-detector diffractometer	6936 measured reflections 4119 independent reflections
Radiation source: Rotating Anode	2664 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.036$
ω oscillation scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 1.6^{\circ}$
Absorption correction: multi-scan	$h = -20 \rightarrow 20$
(ABSCOR; Higashi, 1995)	$k = -8 \rightarrow 8$
$T_{\min} = 0.956, \ T_{\max} = 0.990$	$l = -27 \rightarrow 27$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map

map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.118P)^2 + 0.1983P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.22 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $0.52 \times 0.12 \times 0.11 \text{ mm}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.29192 (15)	0.0348 (3)	0.02418 (12)	0.0946 (7)	
O2	0.1016 (2)	-0.5875 (3)	-0.16845 (10)	0.1029 (8)	
C1	0.23966 (16)	-0.1048 (3)	-0.01874 (12)	0.0551 (5)	
C2	0.28081 (17)	-0.3137 (4)	-0.00061 (13)	0.0596 (6)	
H2A	0.3425	-0.3397	0.0467	0.074 (7)*	
C3	0.23343 (19)	-0.4665 (4)	-0.04914 (13)	0.0616 (6)	
H3A	0.2631	-0.5960	-0.0342	0.080 (8)*	
C4	0.13635 (19)	-0.4419 (4)	-0.12469 (12)	0.0581 (6)	
C5	0.07944 (16)	-0.2423 (3)	-0.14694 (10)	0.0490 (5)	
H5A	0.0655	-0.1990	-0.1957	0.067 (7)*	
C6	0.13399 (15)	-0.0649 (3)	-0.08969 (11)	0.0478 (5)	
H6A	0.1391	0.0514	-0.1162	0.066 (7)*	
C7	0.05338 (18)	-0.0092 (4)	-0.07124 (13)	0.0638 (7)	
H7A	0.0633	0.1236	-0.0468	0.082 (8)*	

C8	-0.04733(19)	-0.0353(5)	-0.15063(15)	0.0781 (8)
H8A	-0 1095	-0.0148	-0.1516	0.111(11)*
H8B	-0.0497	0.0498	-0.1886	$0.082(8)^{*}$
C9	-0.02716(19)	-0.2589(5)	-0.15655(14)	0.002(0)
H9A	-0.0828	-0.3311	-0.2022	0.096 (9)*
C10	-0.0019(2)	-0.3395(5)	-0.08217(17)	0.0799 (8)
H10A	-0.0175	-0.4691	-0.0735	0.096*
C11	0.0467 (2)	-0.1914(5)	-0.03133(15)	0.0760 (8)
HIIA	0.0721	-0.1986	0.0199	0.091*
03	0.2497(2)	-0.2686(4)	-0.34967(12)	0.1181 (10)
04	0.48892 (15)	0.3614 (3)	-0.18269(12)	0.0870 (6)
C12	0.3043 (2)	-0.1294 (4)	-0.30817(13)	0.0652 (6)
C13	0.28648(19)	0.0779 (4)	-0.33792(13)	0.0656 (6)
H13A	0.2323	0.1012	-0.3886	0.092 (9)*
C14	0.34485 (18)	0.2354 (4)	-0.29597(14)	0.0620 (6)
H14A	0.3289	0.3645	-0.3182	0.082 (9)*
C15	0.43306 (16)	0.2141 (3)	-0.21624(13)	0.0541(5)
C16	0.45436 (15)	0.0118 (3)	-0.17730(11)	0.0504 (5)
H16A	0.5278	-0.0221	-0.1540	0.050 (6)*
C17	0.38776 (16)	-0.1714(3)	-0.22614(11)	0.0511 (5)
H17A	0.4348	-0.2753	-0.2236	0.066 (7)*
C18	0.34259 (19)	-0.2549 (4)	-0.18255 (14)	0.0665 (7)
H18A	0.3164	-0.3956	-0.1948	0.070 (7)*
C19	0.4353 (2)	-0.2168(5)	-0.10083(14)	0.0796 (8)
H19A	0.4984	-0.2847	-0.0886	0.083 (9)*
H19B	0.4212	-0.2508	-0.0636	0.129 (13)*
C20	0.4363 (2)	0.0123 (5)	-0.11275 (13)	0.0755 (8)
H20A	0.4863	0.0923	-0.0673	0.085 (8)*
C21	0.3220 (3)	0.0601 (6)	-0.15010 (19)	0.0928 (10)
H21A	0.2952	0.1807	-0.1449	0.111*
C22	0.2675 (2)	-0.0992(5)	-0.19120 (19)	0.0837 (9)
H22A	0.1953	-0.1120	-0.2203	0.100*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0699 (12)	0.0600 (11)	0.0883 (13)	-0.0093 (9)	0.0071 (10)	-0.0161 (10)
O2	0.152 (2)	0.0603 (12)	0.0557 (11)	0.0017 (12)	0.0360 (12)	-0.0137 (9)
C1	0.0451 (11)	0.0487 (12)	0.0563 (12)	-0.0051 (9)	0.0203 (10)	-0.0048 (10)
C2	0.0436 (11)	0.0587 (14)	0.0559 (12)	0.0071 (10)	0.0165 (10)	0.0076 (11)
C3	0.0689 (14)	0.0461 (13)	0.0621 (13)	0.0107 (10)	0.0332 (12)	0.0048 (10)
C4	0.0789 (15)	0.0498 (13)	0.0433 (10)	-0.0029 (10)	0.0337 (11)	-0.0023 (9)
C5	0.0531 (11)	0.0533 (12)	0.0338 (9)	-0.0004 (9)	0.0210 (8)	0.0037 (8)
C6	0.0473 (11)	0.0420 (11)	0.0495 (10)	0.0025 (8)	0.0252 (9)	0.0044 (9)
C7	0.0566 (13)	0.0709 (16)	0.0573 (12)	0.0184 (11)	0.0290 (11)	-0.0016 (11)
C8	0.0511 (14)	0.107 (2)	0.0661 (15)	0.0232 (14)	0.0278 (12)	0.0209 (15)
C9	0.0462 (12)	0.091 (2)	0.0531 (12)	-0.0129 (12)	0.0158 (10)	0.0009 (13)
C10	0.0608 (15)	0.099 (2)	0.0882 (19)	-0.0061 (14)	0.0478 (15)	0.0189 (17)

supporting information

C11	0.0644 (15)	0.116 (2)	0.0589 (14)	0.0220 (15)	0.0421 (13)	0.0195 (15)
03	0.140 (2)	0.0854 (15)	0.0597 (11)	-0.0461 (14)	0.0168 (12)	-0.0131 (10)
O4	0.0699 (11)	0.0565 (11)	0.0983 (14)	-0.0123 (9)	0.0271 (10)	-0.0112 (10)
C12	0.0673 (14)	0.0638 (16)	0.0458 (11)	-0.0136 (11)	0.0216 (11)	-0.0050 (10)
C13	0.0593 (13)	0.0700 (16)	0.0463 (12)	0.0002 (11)	0.0179 (10)	0.0078 (11)
C14	0.0592 (13)	0.0550 (14)	0.0658 (13)	0.0049 (10)	0.0323 (12)	0.0107 (11)
C15	0.0439 (11)	0.0511 (13)	0.0637 (13)	-0.0030 (9)	0.0288 (10)	-0.0090 (10)
C16	0.0380 (10)	0.0581 (13)	0.0476 (10)	0.0017 (8)	0.0201 (9)	-0.0036 (9)
C17	0.0529 (11)	0.0498 (12)	0.0485 (11)	0.0011 (9)	0.0279 (9)	-0.0009 (9)
C18	0.0641 (14)	0.0672 (16)	0.0671 (14)	-0.0060 (12)	0.0370 (12)	0.0097 (12)
C19	0.0854 (19)	0.099 (2)	0.0553 (14)	0.0059 (16)	0.0409 (14)	0.0162 (14)
C20	0.0889 (19)	0.089 (2)	0.0512 (13)	-0.0114 (15)	0.0418 (13)	-0.0153 (13)
C21	0.123 (3)	0.095 (2)	0.113 (2)	0.024 (2)	0.098 (2)	0.005 (2)
C22	0.0706 (17)	0.098 (2)	0.104 (2)	0.0038 (16)	0.0628 (17)	0.0162 (19)

Geometric parameters (Å, °)

O1-C1 1.219 (3) O3-C O2-C4 1.224 (3) O4-C	1.215 (3) 1.5 1.220 (3)
O2—C4 1.224 (3) O4—C	1.220 (3)
C1—C2 1.464 (3) C12—4	C13 1.456 (4)
C1—C6 1.493 (3) C12—4	C17 1.496 (3)
C2—C3 1.321 (3) C13—	C14 1.327 (3)
C2—H2A 0.9301 C13—J	H13A 0.9300
C3—C4 1.460 (3) C14—4	C15 1.462 (3)
C3—H3A 0.9299 C14—J	H14A 0.9300
C4—C5 1.495 (3) C15—4	C16 1.497 (3)
C5—C6 1.542 (3) C16—4	C17 1.538 (3)
C5—C9 1.563 (3) C16—4	C20 1.564 (3)
C5—H5A 0.9799 C16—J	H16A 0.9800
C6—C7 1.567 (3) C17—4	C18 1.559 (3)
С6—Н6А 0.9800 С17—	H17A 0.9800
C7—C11 1.505 (4) C18—	C22 1.483 (4)
C7—C8 1.526 (3) C18—4	C19 1.523 (4)
C7—H7A 0.9800 C18—	H18A 0.9800
C8—C9 1.517 (4) C19—4	C20 1.522 (4)
C8—H8A 0.9702 C19—J	H19A 0.9700
C8—H8B 0.9700 C19—J	H19B 0.9700
C9—C10 1.502 (4) C20—4	C21 1.514 (4)
С9—Н9А 0.9801 С20—	H20A 0.9801
C10—C11 1.324 (4) C21—4	C22 1.314 (4)
C10—H10A 0.9300 C21—J	H21A 0.9300
C11—H11A 0.9300 C22—	H22A 0.9300
01—C1—C2 119.8 (2) O3—C	C12—C13 120.0 (2)
O1—C1—C6 120.6 (2) O3—C	C12—C17 119.7 (2)
C2—C1—C6 119.63 (18) C13—4	C12—C17 120.3 (2)
C3—C2—C1 122.3 (2) C14—4	C13—C12 122.8 (2)
C3—C2—H2A 118.8 C14—4	C13—H13A 118.4

C1—C2—H2A	118.9	C12—C13—H13A	118.8
C2—C3—C4	123.1 (2)	C13—C14—C15	122.6 (2)
С2—С3—НЗА	118.3	C13—C14—H14A	118.7
С4—С3—НЗА	118.6	C15—C14—H14A	118.7
O2—C4—C3	119.1 (2)	O4—C15—C14	119.4 (2)
O2—C4—C5	120.9 (2)	O4—C15—C16	121.0 (2)
C3—C4—C5	120.00 (19)	C14—C15—C16	119.67 (19)
C4—C5—C6	116.52 (17)	C15—C16—C17	117.52 (17)
C4—C5—C9	112.11 (19)	C15—C16—C20	113.36 (19)
C6—C5—C9	102.60 (18)	C17—C16—C20	102.03 (18)
C4—C5—H5A	108.6	C15—C16—H16A	107.7
С6—С5—Н5А	108.3	C17—C16—H16A	108.0
С9—С5—Н5А	108.3	C20—C16—H16A	107.8
C1—C6—C5	117.58 (17)	C12—C17—C16	116.78 (19)
C1—C6—C7	111.38 (18)	C12-C17-C18	112.29 (19)
$C_{5}-C_{6}-C_{7}$	102.61 (17)	C16-C17-C18	103.15(17)
C1 - C6 - H6A	108.4	C12 - C17 - H17A	108.2
C5-C6-H6A	108.3	C16-C17-H17A	108.0
C7—C6—H6A	108.1	C18 - C17 - H17A	108.0
$C_{11} - C_{7} - C_{8}$	100.1 100.5(2)	C^{22} C^{18} C^{19}	100.0 101.2(2)
$C_{11} - C_{7} - C_{6}$	106 78 (19)	C^{22} C^{10} C^{17}	101.2(2) 106.5(2)
C8-C7-C6	99.07 (18)	C19 - C18 - C17	99 93 (19)
$C_{11} = C_{7} = H_{7A}$	116.0	C_{22} C_{18} H_{18A}	115 5
C8-C7-H7A	116.2	C19 - C18 - H18A	115.9
C6-C7-H7A	116.0	C17 - C18 - H18A	115.6
C9 - C8 - C7	94 01 (19)	C_{20} C_{19} C_{18}	93.6.(2)
C9-C8-H8A	112.7	C_{20} C_{19} H_{19A}	112.9
C7 - C8 - H8A	112.7	C_{18} C_{19} H_{19A}	112.9
C9-C8-H8B	112.9	C_{20} C_{19} H_{19B}	112.7
C7 - C8 - H8B	112.0	C_{18} C_{19} H_{19B}	113.1
$H_{8}A = C_{8} = H_{8}B$	110.4	H19A - C19 - H19B	110.5
C10-C9-C8	100.9(2)	C_{21} C_{20} C_{19}	99.8 (3)
C10 - C9 - C5	100.9(2) 105.94(19)	$C_{21} = C_{20} = C_{15}$	106.9(2)
C_{8}^{-} C_{9}^{-} C_{5}^{-}	100.4(2)	C_{19} C_{20} C_{16}	99.8(2)
C_{10} C_{9} H9A	115.7	$C_{21} C_{20} H_{20A}$	116.2
C8 - C9 - H9A	116.1	C19 - C20 - H20A	116.0
C_{5} C_{9} H_{9A}	115.7	$C_{10} = C_{20} = H_{20A}$	115.8
$C_{11} - C_{10} - C_{9}$	107.1 (3)	$C_{22}^{22} - C_{21}^{22} - C_{20}^{22}$	107.8 (3)
$C_{11} = C_{10} = C_{10}$	107.1 (5)	$C_{22} = C_{21} = C_{20}$	107.8 (5)
C9-C10-H10A	126.4	$C_{22} = C_{21} = H_{21} A$	126.1
C10-C11-C7	120.4 107.8 (2)	$C_{20} = C_{21} = H_{21} K$	120.1 107.4(3)
$C_{10} = C_{11} = C_{11}$	107.8 (2)	$C_{21} = C_{22} = C_{18}$	107.4 (3)
C7 $C11$ $H11A$	120.1	$C_{21} = C_{22} = H_{22A}$	126.3
	120.1	C10-C22-1122A	120.5
O1—C1—C2—C3	-171.7 (3)	O3—C12—C13—C14	-178.5 (3)
C6—C1—C2—C3	8.3 (4)	C17—C12—C13—C14	3.1 (4)
C1—C2—C3—C4	-0.1 (4)	C12—C13—C14—C15	0.7 (4)
C2—C3—C4—O2	174.5 (3)	C13—C14—C15—O4	173.9 (3)

C2—C3—C4—C5	-7.1 (4)	C13-C14-C15-C16	-5.3 (4)
O2—C4—C5—C6	-175.9 (2)	O4—C15—C16—C17	-173.3 (2)
C3—C4—C5—C6	5.7 (3)	C14—C15—C16—C17	5.9 (3)
O2—C4—C5—C9	66.3 (3)	O4—C15—C16—C20	68.0 (3)
C3—C4—C5—C9	-112.1 (2)	C14—C15—C16—C20	-112.8 (2)
O1—C1—C6—C5	171.2 (2)	O3—C12—C17—C16	179.5 (3)
C2-C1-C6-C5	-8.9 (3)	C13—C12—C17—C16	-2.1 (3)
O1—C1—C6—C7	-70.9 (3)	O3—C12—C17—C18	-61.7 (3)
C2-C1-C6-C7	109.1 (2)	C13—C12—C17—C18	116.7 (3)
C4—C5—C6—C1	2.1 (3)	C15—C16—C17—C12	-2.3 (3)
C9—C5—C6—C1	124.9 (2)	C20-C16-C17-C12	122.3 (2)
C4—C5—C6—C7	-120.51 (19)	C15—C16—C17—C18	-125.9 (2)
C9—C5—C6—C7	2.3 (2)	C20-C16-C17-C18	-1.3 (2)
C1-C6-C7-C11	-61.5 (2)	C12-C17-C18-C22	-57.7 (3)
C5-C6-C7-C11	65.1 (2)	C16—C17—C18—C22	68.9 (2)
C1—C6—C7—C8	-165.4 (2)	C12-C17-C18-C19	-162.6 (2)
C5—C6—C7—C8	-38.8 (2)	C16—C17—C18—C19	-36.0 (2)
C11—C7—C8—C9	-49.1 (2)	C22-C18-C19-C20	-50.3 (2)
C6—C7—C8—C9	60.0 (2)	C17—C18—C19—C20	58.9 (2)
C7—C8—C9—C10	49.8 (2)	C18—C19—C20—C21	49.3 (2)
C7—C8—C9—C5	-58.9 (2)	C18—C19—C20—C16	-59.9 (2)
C4—C5—C9—C10	56.3 (3)	C15-C16-C20-C21	62.2 (3)
C6—C5—C9—C10	-69.4 (3)	C17—C16—C20—C21	-65.2 (3)
C4—C5—C9—C8	160.98 (18)	C15-C16-C20-C19	165.6 (2)
C6—C5—C9—C8	35.2 (2)	C17—C16—C20—C19	38.3 (2)
C8—C9—C10—C11	-33.6 (3)	C19—C20—C21—C22	-33.2 (3)
C5-C9-C10-C11	70.6 (3)	C16—C20—C21—C22	70.3 (3)
C9—C10—C11—C7	0.7 (3)	C20—C21—C22—C18	0.0 (3)
C8—C7—C11—C10	32.2 (3)	C19—C18—C22—C21	33.3 (3)
C6—C7—C11—C10	-70.7 (3)	C17—C18—C22—C21	-70.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C2—H2A····O4 ⁱ	0.93	2.58	3.502 (3)	172
C6—H6A···O2 ⁱⁱ	0.98	2.53	3.446 (3)	155
С11—Н11А…ОЗ ^{ііі}	0.93	2.58	3.335 (4)	138
C16—H16A…O1 ⁱ	0.98	2.59	3.416 (3)	142
C17—H17 <i>A</i> ···O4 ^{iv}	0.98	2.51	3.319 (3)	140

Symmetry codes: (i) -*x*+1, -*y*, -*z*; (ii) *x*, *y*+1, *z*; (iii) *x*, -*y*-1/2, *z*+1/2; (iv) *x*, *y*-1, *z*.