Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diaguabis[2-(2-pyridylmethoxy)pyrazine- κN^4]bis(thiocyanato- κN)cobalt(II)

Zhong Nian Yang

Department of Chemistry and Chemical Engineering, Binzhou University, Binzhou 256603, People's Republic of China

Correspondence e-mail: yangzhongnian1978@yahoo.com.cn

Received 20 September 2008; accepted 24 September 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.039; wR factor = 0.108; data-to-parameter ratio = 16.5.

In the title complex, $[Co(NCS)_2(C_{10}H_9N_3O)_2(H_2O)_2]$, the Co^{II} ion is located on a crystallographic twofold rotation axis and is in a slightly distorted octahedral CoN₄O₂ coordination environment. The dihedral angle between the pyridine and pyrazine rings is $85.86 (10)^{\circ}$. In the crystal structure, intermolecular $O-H \cdots N$ and $O-H \cdots S$ hydrogen bonds link complex molecules into a three-dimensional network.

Related literature

For the isostructural Mn complex, see: Li (2007). For a related structure, see: Zhao et al. (2007).

Experimental

Crystal data

$[Co(NCS)_2(C_{10}H_9N_3O)_2(H_2O)_2]$
$M_r = 585.53$
Monoclinic, C2/c
a = 19.954 (4) Å
b = 10.044 (2) Å
c = 13.650 (3) Å
$\beta = 110.749 \ (3)^{\circ}$

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan SADABS (Sheldrick, 1996) $T_{\min} = 0.714, T_{\max} = 0.872$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	1 restraint
$wR(F^2) = 0.108$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.75 \ {\rm e} \ {\rm \AA}^{-3}$
2768 reflections	$\Delta \rho_{\rm min} = -0.37 \text{ e} \text{ Å}^{-3}$
168 parameters	

7123 measured reflections

 $R_{\rm int} = 0.032$

2768 independent reflections

2361 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

Co1-N4	2.0597 (19)	Co1-N3	2.1856 (15)
Co1-O2	2.1394 (13)		
N4-Co1-N4 ⁱ	175.43 (9)	O2-Co1-N3 ⁱ	173.74 (6)
N4-Co1-O2	91.49 (6)	N4-Co1-N3	90.81 (6)
$N4^{4} - Co1 - O2$	85.34 (6)	O2-Co1-N3	92.79 (6)
$J_2 = Co1 = O_2$	92.24 (8)	N3 -C01-N3	82.45 (8)
4-C01-N3	92.03 (0)		

Symmetry code: (i) -x, y, $-z + \frac{3}{2}$.

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O2−H5···S1 ⁱⁱ	0.86	2.58	3.4123 (17)	164
O2−H8···N1 ⁱⁱⁱ	0.83	1.98	2.803 (2)	172

try codes: (ii) $x, -y + 1, z + \frac{1}{2}$; (iii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 2$

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the Doctors' Foundation of Binzhou University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2698).

References

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Li, J.-M. (2007). Acta Cryst. E63, m2266.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhao, H.-Y., Shi, J.-M. & Liu, L.-D. (2007). Acta Cryst. E63, m441-m442.

supporting information

Acta Cryst. (2008). E64, m1350 [doi:10.1107/S1600536808030882]

Diaquabis[2-(2-pyridylmethoxy)pyrazine- κN^4]bis(thiocyanato- κN)cobalt(II)

Zhong Nian Yang

S1. Comment

Molecules containing both pyridyl and pyrazinyl groups are useful multi-dentate ligands and a number of complexes have been published dealing with these ligands (e.g. Zhao *et al.*, 2007; Li, 2007). Herein the crystal structure of the title complex, (I), with 2-((pyridin-2-yl)methoxy)pyrazine as ligand, is reported.

The molecular structure of (I) is shown in Fig. 1. In the mono-nuclear complex, atom Co1 lies on a twofold rotation axis and its coordination geometry is slightly distorted octahedral (Table 1). In the crystal structure, complex molecules are linked via intermolecular O—H···S and O—H···N hydrogen bonds as shown in Fig. 2 and Table 2, to form a three-dimensional network. The diheral angle between pyridine and pyrazine rings is 85.86 (10)°. The title compound is isostructural with the Mn^{II} complex (Li, 2007).

S2. Experimental

A 5 ml methanol solution of 2-[(pyridin-2-yl)methoxy]pyrazine (0.0526 g, 0.281 mmol) was added into 10 ml H₂O solution containing $Co(ClO_4)_2.6H_2O$ (0.1032 g, 0.282 mmol) and NaSCN (0.0457 g, 0.564 mmol), and the mixture was stirred for a few minutes. Red single crystals were obtained after the solution had been allowed to stand at room temperature for two weeks.

S3. Refinement

The H atoms bonded to O atoms were located in a difference Fourier map, and included in their 'as found' positions. The C-bound H atoms were placed in calculated positions, C—H = 0.93–0.97 Å. All H atoms were refined as riding, with $U_{iso}(H) = 1.2-1.5U_{eq}(C,O)$.

Figure 1

View of complex (I), showing the the asymmetric atom numbering scheme with thermal ellipsoids drawn at the 30% probability level. (symmetry code: (i) -*x*, *y*, -*z* + 3/2)

Figure 2

Part of the crystal structure of (I). Hydrogen bonds are shown as dashed lines.

Diaquabis[2-(2-pyridylmethoxy)pyrazine-кN⁴]bis(thiocyanato-кN)cobalt(II)

$[Co(NCS)_2(C_{10}H_9N_3O)_2(H_2O)_2]$
$M_r = 585.53$
Monoclinic, $C2/c$
Hall symbol: -C 2yc
a = 19.954 (4) Å
b = 10.044 (2) Å
c = 13.650(3) Å
$\beta = 110.749 (3)^{\circ}$
$V = 2558.2 (10) \text{ Å}^3$
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan *SADABS* (Sheldrick, 1996) $T_{\min} = 0.714, T_{\max} = 0.872$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.108$ S = 1.092768 reflections F(000) = 1204 $D_x = 1.520 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3335 reflections $\theta = 2.3-27.5^{\circ}$ $\mu = 0.88 \text{ mm}^{-1}$ T = 298 KBlock, red $0.41 \times 0.31 \times 0.16 \text{ mm}$

7123 measured reflections 2768 independent reflections 2361 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 27.0^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -25 \rightarrow 21$ $k = -11 \rightarrow 12$ $l = -9 \rightarrow 17$

168 parameters1 restraintPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.0638P)^2 + 0.3122P]$
neighbouring sites	where $P = (F_o^2 + 2F_c^2)/3$
H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.008$
	$\Delta ho_{ m max} = 0.75 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.23226 (11)	-0.20768 (19)	1.25209 (19)	0.0415 (5)
H1	0.1927	-0.2583	1.2136	0.050*
C2	0.25719 (13)	-0.2109 (2)	1.3601 (2)	0.0473 (5)
H2	0.2351	-0.2643	1.3955	0.057*
C3	0.31522 (12)	-0.1337 (2)	1.41439 (17)	0.0471 (5)
H3	0.3328	-0.1326	1.4872	0.057*
C4	0.34682 (12)	-0.0580 (2)	1.35887 (17)	0.0474 (5)
H4	0.3863	-0.0062	1.3961	0.057*
C5	0.26655 (10)	-0.12879 (17)	1.20171 (15)	0.0336 (4)
C6	0.24197 (11)	-0.1258 (2)	1.08505 (16)	0.0431 (5)
H6A	0.2825	-0.1138	1.0625	0.052*
H6B	0.2184	-0.2089	1.0562	0.052*
N2	0.17307 (9)	-0.09050 (15)	0.88100 (13)	0.0385 (4)
C8	0.15889 (10)	-0.00579 (18)	0.94509 (15)	0.0349 (4)
C9	0.13592 (11)	-0.0711 (2)	0.77904 (16)	0.0425 (5)
H9	0.1426	-0.1301	0.7308	0.051*
C10	0.08838 (10)	0.0321 (2)	0.74250 (16)	0.0398 (5)
H10	0.0646	0.0421	0.6708	0.048*
C11	0.10991 (10)	0.09863 (18)	0.91016 (15)	0.0341 (4)
H11	0.1012	0.1545	0.9587	0.041*
C12	0.02714 (11)	0.28829 (18)	0.53206 (17)	0.0365 (4)
Col	0.0000	0.28266 (3)	0.7500	0.02902 (14)
N4	0.02348 (10)	0.29084 (16)	0.61484 (15)	0.0394 (4)
N3	0.07579 (8)	0.11899 (15)	0.80922 (13)	0.0330 (3)
N1	0.32395 (9)	-0.05466 (17)	1.25423 (13)	0.0402 (4)
01	0.19253 (8)	-0.01598 (14)	1.04945 (11)	0.0455 (4)
O2	0.07922 (7)	0.43031 (14)	0.82323 (11)	0.0425 (3)
Н5	0.0637	0.4916	0.8532	0.064*
H8	0.1079	0.4599	0.7969	0.064*
S 1	0.03352 (5)	0.28165 (7)	0.41650 (6)	0.0722 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0319 (10)	0.0342 (10)	0.0538 (13)	0.0006 (7)	0.0096 (10)	0.0005 (9)
C2	0.0484 (13)	0.0442 (11)	0.0552 (14)	0.0083 (9)	0.0257 (11)	0.0133 (10)
C3	0.0505 (13)	0.0511 (12)	0.0351 (11)	0.0126 (10)	0.0096 (10)	0.0053 (10)
C4	0.0409 (11)	0.0471 (12)	0.0439 (12)	-0.0040 (9)	0.0022 (10)	-0.0025 (10)
C5	0.0296 (9)	0.0283 (9)	0.0380 (10)	0.0092 (7)	0.0059 (8)	0.0013 (7)
C6	0.0425 (11)	0.0390 (10)	0.0387 (11)	0.0150 (9)	0.0032 (9)	0.0006 (9)
N2	0.0362 (9)	0.0342 (8)	0.0403 (9)	0.0070 (7)	0.0075 (7)	-0.0012 (7)
C8	0.0310 (9)	0.0330 (9)	0.0339 (10)	0.0013 (7)	0.0032 (8)	-0.0014 (8)
C9	0.0439 (11)	0.0420 (11)	0.0367 (11)	0.0094 (9)	0.0082 (9)	-0.0046 (9)
C10	0.0362 (10)	0.0425 (10)	0.0347 (10)	0.0066 (8)	0.0051 (9)	-0.0033 (9)
C11	0.0294 (9)	0.0315 (9)	0.0354 (10)	0.0028 (7)	0.0040 (8)	-0.0028 (8)
C12	0.0364 (10)	0.0331 (9)	0.0404 (9)	0.0018 (7)	0.0140 (9)	0.0011 (8)
Col	0.0249 (2)	0.0302 (2)	0.0284 (2)	0.000	0.00494 (15)	0.000
N4	0.0405 (10)	0.0391 (9)	0.0397 (9)	-0.0016 (7)	0.0152 (8)	0.0003 (7)
N3	0.0257 (7)	0.0328 (8)	0.0354 (8)	0.0009 (6)	0.0045 (6)	-0.0013 (6)
N1	0.0346 (9)	0.0398 (9)	0.0419 (9)	-0.0016 (7)	0.0083 (8)	0.0039 (8)
01	0.0514 (9)	0.0385 (7)	0.0343 (8)	0.0187 (6)	-0.0002 (7)	-0.0015 (6)
O2	0.0415 (8)	0.0437 (8)	0.0417 (8)	-0.0125 (6)	0.0137 (7)	-0.0072 (6)
S1	0.1124 (7)	0.0671 (5)	0.0530 (4)	0.0083 (4)	0.0491 (4)	0.0012 (3)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—C5	1.379 (3)	C8—C11	1.397 (2)
C1—C2	1.380 (3)	C9—C10	1.373 (3)
C1—H1	0.9300	С9—Н9	0.9300
C2—C3	1.372 (3)	C10—N3	1.348 (2)
C2—H2	0.9300	C10—H10	0.9300
C3—C4	1.374 (3)	C11—N3	1.319 (2)
С3—Н3	0.9300	C11—H11	0.9300
C4—N1	1.337 (3)	C12—N4	1.158 (3)
C4—H4	0.9300	C12—S1	1.628 (2)
C5—N1	1.341 (2)	Co1—N4	2.0597 (19)
С5—С6	1.491 (3)	Co1—N4 ⁱ	2.0597 (19)
C6—O1	1.445 (2)	Co1—O2	2.1394 (13)
С6—Н6А	0.9700	Co1—O2 ⁱ	2.1394 (13)
С6—Н6В	0.9700	Co1—N3 ⁱ	2.1856 (15)
N2—C8	1.321 (2)	Co1—N3	2.1856 (15)
N2—C9	1.339 (3)	O2—H5	0.8552
C8—O1	1.346 (2)	O2—H8	0.8316
C5—C1—C2	119.44 (19)	C9—C10—H10	119.6
C5—C1—H1	120.3	N3—C11—C8	120.83 (17)
C2—C1—H1	120.3	N3—C11—H11	119.6
C3—C2—C1	118.7 (2)	C8—C11—H11	119.6
С3—С2—Н2	120.7	N4—C12—S1	178.7 (2)
			× /

	100 5		1 = = + 2 (0)
С1—С2—Н2	120.7	N4—Col—N4 ¹	175.43 (9)
C2—C3—C4	118.6 (2)	N4—Co1—O2	91.49 (6)
С2—С3—Н3	120.7	N4 ⁱ —Co1—O2	85.34 (6)
С4—С3—Н3	120.7	N4—Co1—O2 ⁱ	85.34 (6)
N1—C4—C3	123.60 (19)	$N4^{i}$ —Co1—O2 ⁱ	91.49 (6)
N1—C4—H4	118.2	O2—Co1—O2 ⁱ	92.24 (8)
C3—C4—H4	118.2	N4—Co1—N3 ⁱ	92.63 (6)
N1-C5-C1	122.21 (19)	N4 ⁱ —Co1—N3 ⁱ	90.81 (6)
N1—C5—C6	117.08 (18)	O2-Co1-N3 ⁱ	173.74 (6)
C1—C5—C6	120.69 (18)	O2 ⁱ —Co1—N3 ⁱ	92.79 (6)
O1—C6—C5	107.55 (16)	N4—Co1—N3	90.81 (6)
O1—C6—H6A	110.2	N4 ⁱ —Co1—N3	92.63 (6)
С5—С6—Н6А	110.2	O2—Co1—N3	92.79 (6)
O1—C6—H6B	110.2	O2 ⁱ —Co1—N3	173.74 (6)
С5—С6—Н6В	110.2	N3 ⁱ —Co1—N3	82.45 (8)
H6A—C6—H6B	108.5	C12—N4—Co1	170.41 (18)
C8 - N2 - C9	115 14 (16)	C11 - N3 - C10	117.06 (16)
$N_{2}^{2} = C_{3}^{2} = 0_{1}^{2}$	120 55 (16)	C11-N3-Co1	12244(12)
$N_2 = C_8 = C_{11}$	123.07(17)	C10-N3-Co1	122.11(12) 120.49(13)
$\Omega_1 \subset \mathcal{C}_2 \subset \Omega_1$	125.07(17) 116.38(17)	C_{4} N1 C5	120.49(13) 117.44(17)
$N_{2} = C_{9} = C_{10}$	110.38(17) 122.07(10)	C_{1}^{*}	117.44(17) 116.04(15)
$N_2 = C_2 = C_{10}$	112.97 (19)	$C_{0} = 01 = 00$	113.0
12 - 0 - 119	110.5	$C_{01} = 02 = 113$	113.0
C10-C9-H9	110.3	C01 - 02 - H8	125.0
N3-C10-C9	120.87 (19)	Н5—02—Н8	111./
N3-C10-H10	119.6		
$C_{5}-C_{1}-C_{2}-C_{3}$	0.8 (3)	C9-C10-N3-Co1	180.00 (15)
$C_1 - C_2 - C_3 - C_4$	-10(3)	N4— $Co1$ — $N3$ — $C11$	150.00(12)
$C_{2} = C_{3} = C_{4} = N_{1}$	0.3(3)	$N4^{i}$ Col N3 Cll	-26.06(15)
$C_2 = C_1 = C_2 = N_1$	0.3(3)	Ω^2	59 39 (14)
$C_2 = C_1 = C_2 = C_1$	178 48 (17)	N_{2}^{3} Col N3 C11	-11653(16)
12 - 1 - 25 - 20	-880(2)	$N_{1} = C_{1} = N_{2} = C_{1}$	-30.40(15)
$C_1 = C_5 = C_6 = O_1$	03.0(2)	N4i Col N2 C10	50.49(15)
$C_1 = C_2 = C_1 = C_1$	95.7(2)	N4 - C01 - N3 - C10	132.33(13)
$C_{9} = N_{2} = C_{8} = C_{11}$	1/9.51 (18)	02 - 01 - N3 - 010	-122.02(14)
C9 - N2 - C8 - C11	-1.2(3)	N3 - C0I - N3 - C10	62.06 (13)
C8—N2—C9—C10	2.4 (3)	C3-C4-N1-C5	0.7(3)
N2-C9-C10-N3	-1.2 (3)	C1—C5—N1—C4	-1.0 (3)
N2-C8-C11-N3	-1.2 (3)	C6—C5—N1—C4	-179.25 (17)
O1—C8—C11—N3	178.10 (17)	N2-C8-O1-C6	-1.9 (3)
C8—C11—N3—C10	2.4 (3)	C11—C8—O1—C6	178.76 (17)
C8—C11—N3—Co1	-178.94 (13)	C5-C6-O1-C8	-173.42 (17)
C9-C10-N3-C11	-1.3 (3)		

Symmetry code: (i) -x, y, -z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O2—H5…S1 ⁱⁱ	0.86	2.58	3.4123 (17)	164

Acta Cryst. (2008). E**64**, m1350

			supportin	supporting information		
O2—H8…N1 ⁱⁱⁱ	0.83	1.98	2.803 (2)	172		
Symmetry codes: (ii) x , $-y+1$, $z+1/2$; (iii)	i) $-x+1/2$, $-y+1/2$, $-z+2$.					